[-ordinary Hasse invariants]
In this article, we construct in a purely local way partial (Hasse) invariants for -divisible groups with given endomorphisms, using crystalline cohomology. These invariants generalises the classical Hasse invariant, and allow us to study families of such groups. We also study a few geometric properties of these invariants. Used in the context of Shimura varieties, for example, these invariants are detecting some Newton strata, including the -ordinary locus.
Dans cet article on se propose de construire d’une manière purement locale des invariants partiels pour des groupes -divisibles munis d’endomorphismes, en utilisant des résultats de cohomologie cristalline. Ces invariants généralisent l’invariant de Hasse, et permettent d’étudier des familles de tels groupes. On étudie aussi différentes propriétés géométriques de ces invariants. Appliqués (par exemple) à certaines variétés de Shimura, ces invariants détectent certaines strates de Newton, notamment la strate -ordinaire.
Revised:
Accepted:
Published online:
Mot clés : Groupes $p$-divisibles, cristaux et isocristaux, Variétés de Shimura, lieu $\mu $-ordinaire, Stratification de Newton, invariants de Hasse, multiplication complexe et espaces de modules de groupes $p$-divisibles.
Keywords: $p$-divisible groups, cristals and isocristals, Shimura Varieties, $\mu $-ordinary locus, Newton stratification, Hasse invariants, Complex multiplication and moduli space of $p$-divisible groups.
Hernandez, Valentin 1
@article{AIF_2018__68_4_1519_0, author = {Hernandez, Valentin}, title = {Invariants de {Hasse} $\mu $-ordinaires}, journal = {Annales de l'Institut Fourier}, pages = {1519--1607}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {4}, year = {2018}, doi = {10.5802/aif.3193}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3193/} }
TY - JOUR AU - Hernandez, Valentin TI - Invariants de Hasse $\mu $-ordinaires JO - Annales de l'Institut Fourier PY - 2018 SP - 1519 EP - 1607 VL - 68 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3193/ DO - 10.5802/aif.3193 LA - fr ID - AIF_2018__68_4_1519_0 ER -
%0 Journal Article %A Hernandez, Valentin %T Invariants de Hasse $\mu $-ordinaires %J Annales de l'Institut Fourier %D 2018 %P 1519-1607 %V 68 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3193/ %R 10.5802/aif.3193 %G fr %F AIF_2018__68_4_1519_0
Hernandez, Valentin. Invariants de Hasse $\mu $-ordinaires. Annales de l'Institut Fourier, Volume 68 (2018) no. 4, pp. 1519-1607. doi : 10.5802/aif.3193. https://aif.centre-mersenne.org/articles/10.5802/aif.3193/
[1] Hilbert modular varieties of low dimension, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter, 2004, pp. 113-175 | Zbl
[2] Overconvergent modular sheaves and modular forms for , Isr. J. Math., Volume 201 (2014), pp. 299-359 | DOI | Zbl
[3] Théorie des topos et cohomologie étale des schémas. Tome 2 (Artin, Michael; Grothendieck, Alexander; Verdier, J. L.; Deligne, Pierre; Saint-Donat, Bernard, eds.), Lecture Notes in Math., 270, Springer, 1972, iv+418 pages | MR | Zbl
[4] Théorie de Dieudonné cristalline. II, Lecture Notes in Math., 930, Springer, Berlin, 1982, x+261 pages | MR | Zbl
[5] Notes on crystalline cohomology, Mathematical Notes, Princeton University Press, Princeton, N.J., 1978, vi+243 pages | MR | Zbl
[6] Compatibility with duality for partial Hasse invariants (2016) (preprint)
[7] Groupes -divisibles avec condition de Pappas-Rapoport et invariants de Hasse, J. Éc. Polytech., Volume 4 (2017), pp. 935-972 http://jep.cedram.org/jep-bin/item?id=JEP_2017__4__935_0 | DOI
[8] Torsion in the coherent cohomology of Shimura varieties and Galois representations (2015) (https://arxiv.org/abs/1507.05922)
[9] On the generic part of the cohomology of compact unitary Shimura varieties, Ann. Math., Volume 186 (2017) no. 3, pp. 649-766 | Zbl
[10] Périodes entieres de groupes p-divisibles sur une base générale, Bull. Soc. Math. France, Volume 143 (2015) no. 1, pp. 1-33 | Zbl
[11] Formes modulaires de poids 1, Ann. Sci. Éc. Norm. Supér., Volume 7 (1974), pp. 507-530 | Zbl
[12] Fundamental algebraic geometry : Grothendieck’s FGA explained, Mathematical Surveys and Monographs, 123, American Mathematical Society, 2005, x+339 pages | MR | Zbl
[13] Cohomologie des espaces de modules de groupes p-divisibles et correspondances de Langlands locales, Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales (Astérisque), Volume 291, Société Mathématique de France, 2004, pp. 1-200 | Zbl
[14] La filtration canonique des points de torsion des groupes -divisibles, Ann. Sci. Éc. Norm. Supér., Volume 44 (2011) no. 6, pp. 905-961 (With collaboration of Yichao Tian) | MR | Zbl
[15] Groupes -divisibles sur les corps locaux, Astérisque, 47-48, Société Mathématique de France, 1977, i+262 pages | MR
[16] Strata Hasse invariants, Hecke algebras and Galois representations (2015) (https://arxiv.org/abs/1507.05032)
[17] The -ordinary Hasse invariant of unitary Shimura varieties, J. Reine Angew. Math., Volume 728 (2017), pp. 137-151 | Zbl
[18] Algebraic geometry I. Schemes with examples and exercises, Advanced Lectures in Mathematics, Vieweg + Teubner, Wiesbaden, 2010, viii+615 pages | DOI | MR | Zbl
[19] Éléments de géométrie algébrique IV. Étude locale des schémas et des morphismes de schémas (Quatrième partie), Publ. Math., Inst. Hautes Étud. Sci., Volume 32 (1967), pp. 1-361 http://eudml.org/doc/103873 (Rédigé avec la collaboration de Jean Dieudonné) | Zbl
[20] Groupes de Barsotti-Tate et cristaux de Dieudonné, Séminaire de mathématiques supérieures, 45, Presses de l’Université de Montréal, 1974 | Zbl
[21] The geometry of Newton strata in the reduction modulo of Shimura varieties of PEL type, Duke Math. J., Volume 164 (2015) no. 15, pp. 2809-2895 | Zbl
[22] Zyklische unverzweigte Erweiterungskörper vom Primzahlgrade über einem algebraischen Funktionenkörper der Charakteristik p, Monatsh. Math. Phys., Volume 43 (1936), pp. 477-492 | DOI | Zbl
[23] La filtration canonique des -modules -divisibles (2016) (https://arxiv.org/abs/1611.07396, to appear in Math. Ann.)
[24] Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986) no. 2, pp. 231-273 | Zbl
[25] -adic properties of modular schemes and modular forms, Modular Functions of one Variable III, Proc. internat. Summer School, Univ. Antwerp 1972 (Lecture Notes in Math.), Volume 350, Springer, 1973, pp. 69-190 | Zbl
[26] Slope filtration of -crystals, Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. I (Astérisque), Volume 63, Société Mathématique de France, Paris, 1979, pp. 113-163 | MR | Zbl
[27] Serre–Tate local moduli, Algebraic surfaces (Orsay, 1976–78) (Lecture Notes in Math.), Volume 868, Springer, 1981, pp. 138-202 | MR | Zbl
[28] The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”, Math. Scand, Volume 39 (1976) no. 1, pp. 19-55 | Zbl
[29] Generalized -ordinary Hasse invariants, J. Algebra, Volume 502 (2018), pp. 98-119 | DOI | Zbl
[30] Points on some Shimura varieties over finite fields, J. Am. Math. Soc., Volume 5 (1992) no. 2, pp. 373-444 | DOI | Zbl
[31] Relations between Dieudonné displays and crystalline Dieudonné theory, Algebra Number Theory, Volume 8 (2014) no. 9, pp. 2201-2262 | DOI | Zbl
[32] Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, 39, Springer, 2000, xii + 208 pages | Zbl
[33] On the Hodge-Newton filtration for -divisible -modules, Math. Z., Volume 266 (2010) no. 1, pp. 193-205 | DOI | Zbl
[34] Serre-Tate theory for moduli spaces of PEL type, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 2, pp. 223-269 | DOI | Zbl
[35] Sur la théorie de Hida pour le groupe , Bull. Soc. Math. Fr., Volume 140 (2012) no. 3, pp. 335-400 | Zbl
[36] Formes modulaires surconvergentes, Ann. Inst. Fourier, Volume 63 (2013) no. 1, pp. 219-239 | DOI | Zbl
[37] On the classification and specialization of -isocrystals with additional structure, Compositio Math., Volume 103 (1996) no. 2, pp. 153-181 | MR | Zbl
[38] Period spaces for -divisible groups, Annals of Mathematics Studies, 141, Princeton University Press, 1996, xxii+324 pages | DOI | MR | Zbl
[39] On torsion in the cohomology of locally symmetric varieties, Ann. Math., Volume 182 (2015) no. 3, pp. 945-1066 | DOI | Zbl
[40] Moduli of -divisible groups, Camb. J. Math., Volume 1 (2013) no. 2, pp. 145-237 | DOI | MR | Zbl
[41] On the Hodge-Newton filtration for p-divisible groups with additional structures, Int. Math. Res. Not., Volume 2014 (2011) no. 13, pp. 3582-3631 | Zbl
[42] Stacks Project, 2013 (http://stacks.math.columbia.edu)
[43] Ekedahl-Oort and Newton strata for Shimura varieties of PEL type, Math. Ann., Volume 356 (2013) no. 4, pp. 1493-1550 | DOI | Zbl
[44] Ordinariness in good reductions of Shimura varieties of PEL-type, Ann. Sci. Éc. Norm. Supér., Volume 32 (1999) no. 5, pp. 575-618 | DOI | MR | Zbl
[45] The dimension of Oort strata of Shimura varieties of PEL-type, Moduli of abelian varieties (Texel Island, 1999) (Progress in Mathematics), Volume 195, Birkhäuser, Basel, 2001, pp. 441-471 | MR | Zbl
[46] A Dieudonné theory for -divisible groups, Class field theory – its centenary and prospect. Proceedings of the 7th MSJ International Research Institute of the Mathematical Society of Japan, Tokyo, Japan, June 3–12, 1998 (Advanced Studies in Pure Mathematics), Volume 30, Mathematical Society of Japan, 2001, pp. 139-160 | Zbl
[47] The display of a formal -divisible group, Cohomologies -adiques et applications arithmétiques (I) (Astérisque), Société Mathématique de France, 2002, pp. 127-248 | Zbl
Cited by Sources: