Let be a prime number and let be a number field. Let be an abelian variety defined over . We prove that if contains an element of order dividing not fixing any non-trivial element of and is trivial, then the local-global divisibility by holds for for every . Moreover, we prove a similar result without the hypothesis on the triviality of , in the particular case where is a principally polarized abelian variety. Then, we get a more precise result in the case when has dimension . Finally, we show that the hypothesis over the order of is necessary, by providing a counterexample.
In the Appendix, we explain how our results are related to a question of Cassels on the divisibility of the Tate–Shafarevich group, studied by Ciperiani and Stix and Creutz.
Soit un nombre premier et un corps de nombres. Soit une variété abélienne définie sur . Dans cet article nous prouvons le résultat suivant : si contient un élément d’ordre divisant ne fixant aucun élément non nul de et que est trivial, alors satisfait le principe de divisibilité locale globale par pour tout . En outre nous démontrons un résultat similaire sans la condition , dans le cas particulier où est une variété abélienne principalement polarisée. Ensuite nous obtenons un résultat plus précis lorsque est de dimension . Enfin nous démontrons que l’hypothèse sur l’ordre de est nécessaire par un contre-exemple.
Dans l’Appendice, nous expliquons le lien entre nos résultats et une question de Cassels sur la divisibilité du groupe de Tate–Shafarevich, qui fut également étudiée par Ciperiani et Stix ainsi que Creutz.
Revised:
Accepted:
Published online:
Keywords: Local-global, Galois cohomology, abelian varieties, abelian surfaces

@article{AIF_2018__68_2_847_0, author = {Gillibert, Florence and Ranieri, Gabriele}, title = {On the local-global divisibility over abelian varieties}, journal = {Annales de l'Institut Fourier}, pages = {847--873}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {2}, year = {2018}, doi = {10.5802/aif.3179}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3179/} }
TY - JOUR TI - On the local-global divisibility over abelian varieties JO - Annales de l'Institut Fourier PY - 2018 DA - 2018/// SP - 847 EP - 873 VL - 68 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3179/ UR - https://doi.org/10.5802/aif.3179 DO - 10.5802/aif.3179 LA - en ID - AIF_2018__68_2_847_0 ER -
Gillibert, Florence; Ranieri, Gabriele. On the local-global divisibility over abelian varieties. Annales de l'Institut Fourier, Volume 68 (2018) no. 2, pp. 847-873. doi : 10.5802/aif.3179. https://aif.centre-mersenne.org/articles/10.5802/aif.3179/
[1] Class field Theory, Benjamin, 1968, xxvi+259 pages | Zbl
[2] Finite group theory, Cambridge Studies in Advanced Mathematics, Tome 10, Cambridge University Press, 2000, xi+304 pages | Zbl
[3] Weil-Châtelet divisible elements in Tate-Shafarevich groups II: On a question of Cassels, J. Reine Angew. Math., Tome 700 (2015), pp. 175-207 | Zbl
[4] Locally trivial torsors that are not Weil-Châtelet divisible, Bull. Lond. Math. Soc, Tome 45 (2013) no. 5, pp. 935-942 | DOI | Zbl
[5] On the local-global principle for divisibility in the cohomology of elliptic curves, Math. Res. Lett., Tome 23 (2016) no. 2, pp. 377-387 | DOI | Zbl
[6] Canonical forms of Quaternary Abelian Substitutions in an Arbitrary Galois Field, Trans. Am. Math. Soc., Tome 2 (1901), pp. 103-138 | DOI | Zbl
[7] Explicit determination of the images of the Galois representations attached to abelian surfaces with , Exp. Math., Tome 11 (2002) no. 4, pp. 503-512 | DOI | Zbl
[8] Local-global divisibility of rational points in some commutative algebraic groups, Bull. Soc. Math. Fr., Tome 129 (2001) no. 3, pp. 317-338 | DOI | Zbl
[9] An analogue for elliptic curves of the Grunwald-Wang example, C. R., Math., Acad. Sci. Paris, Tome 338 (2004) no. 1, pp. 47-50 | DOI | Zbl
[10] On local-global principle for the divisibility of a rational point by a positive integer, Bull. Lond. Math. Soc., Tome 39 (2007), pp. 27-34 | DOI | Zbl
[11] Galois properties of torsion points on abelian varieties, Invent. Math., Tome 62 (1981), pp. 481-502 | DOI | Zbl
[12] Vanishing of some Galois cohomology groups of elliptic curves, Elliptic Curves, Modular Forms and Iwasawa Theory (Cambridge, 2015) (Springer Proceedings in Mathematics and Statistics) Tome 188 (2017), pp. 373-399 | Zbl
[13] Explicity surjectivity of Galois representations for abelian surfaces and -type varieties, J. Algebra, Tome 460 (2016), pp. 26-59 | DOI | Zbl
[14] Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., Tome 124 (1996) no. 1-3, pp. 437-449 | DOI | Zbl
[15] Local-global divisibility by in elliptic curves defined over , Ann. Mat. Pura Appl., Tome 189 (2010) no. 4, pp. 17-23 | DOI | Zbl
[16] On counterexamples to local-global divisibility in commutative algebraic groups, Acta Arith., Tome 148 (2011) no. 1, pp. 21-29 | DOI | Zbl
[17] Local-Global Divisibility by in elliptic curves, Bull. Lond. Math. Soc., Tome 44 (2012) no. 4, pp. 789-802 | DOI | Zbl
[18] On the minimal set for counterexamples to the Local-Global Divisibility principle, J. Algebra, Tome 415 (2014), pp. 290-304 | DOI | Zbl
[19] Groupe de Brauer et arithméthique des groupes linéaires sur un corps de nombres, J. Reine Angew. Math., Tome 327 (1981), pp. 12-80 | Zbl
[20] Proprietés Galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Tome 15 (1972), pp. 259-331 | DOI | Zbl
[21] Group Theory I, Grundlehren der mathematischen Wissenschaften, Tome 247, Springer, 1982, xiv+434 pages | Zbl
[22] Zur theorie des Potenzreste, Nieuw Arch. Wiskd., Tome 18 (1948) no. 2, pp. 58-61 | Zbl
Cited by Sources: