On the local-global divisibility over abelian varieties
[Sur la divisibilité locale-globale sur les variétés abéliennes]
Annales de l'Institut Fourier, Tome 68 (2018) no. 2, pp. 847-873.

Soit p2 un nombre premier et k un corps de nombres. Soit 𝒜 une variété abélienne définie sur k. Dans cet article nous prouvons le résultat suivant : si Gal(k(𝒜[p])/k) contient un élément g d’ordre divisant p-1 ne fixant aucun élément non nul de 𝒜[p] et que H 1 (Gal(k(𝒜[p])/k),𝒜[p]) est trivial, alors 𝒜(k) satisfait le principe de divisibilité locale globale par p n pour tout n. En outre nous démontrons un résultat similaire sans la condition H 1 (Gal(k(𝒜[p])/k),𝒜[p])=0, dans le cas particulier où 𝒜 est une variété abélienne principalement polarisée. Ensuite nous obtenons un résultat plus précis lorsque 𝒜 est de dimension 2. Enfin nous démontrons que l’hypothèse sur l’ordre de g est nécessaire par un contre-exemple.

Dans l’Appendice, nous expliquons le lien entre nos résultats et une question de Cassels sur la divisibilité du groupe de Tate–Shafarevich, qui fut également étudiée par Ciperiani et Stix ainsi que Creutz.

Let p2 be a prime number and let k be a number field. Let 𝒜 be an abelian variety defined over k. We prove that if Gal(k(𝒜[p])/k) contains an element g of order dividing p-1 not fixing any non-trivial element of 𝒜[p] and H 1 (Gal(k(𝒜[p])/k),𝒜[p]) is trivial, then the local-global divisibility by p n holds for 𝒜(k) for every n. Moreover, we prove a similar result without the hypothesis on the triviality of H 1 (Gal(k(𝒜[p])/k),𝒜[p]), in the particular case where 𝒜 is a principally polarized abelian variety. Then, we get a more precise result in the case when 𝒜 has dimension 2. Finally, we show that the hypothesis over the order of g is necessary, by providing a counterexample.

In the Appendix, we explain how our results are related to a question of Cassels on the divisibility of the Tate–Shafarevich group, studied by Ciperiani and Stix and Creutz.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3179
Classification : 11R34, 11G10
Keywords: Local-global, Galois cohomology, abelian varieties, abelian surfaces
Mot clés : Local-global, Cohomologie galoisienne, variétés abéliennes, surfaces abéliennes

Gillibert, Florence 1 ; Ranieri, Gabriele 1

1 Pontificia Universidad Católica de Valparaíso Instituto de Matemáticas Blanco Viel 596, Valparaíso (Chile)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2018__68_2_847_0,
     author = {Gillibert, Florence and Ranieri, Gabriele},
     title = {On the local-global divisibility over abelian varieties},
     journal = {Annales de l'Institut Fourier},
     pages = {847--873},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {68},
     number = {2},
     year = {2018},
     doi = {10.5802/aif.3179},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3179/}
}
TY  - JOUR
AU  - Gillibert, Florence
AU  - Ranieri, Gabriele
TI  - On the local-global divisibility over abelian varieties
JO  - Annales de l'Institut Fourier
PY  - 2018
SP  - 847
EP  - 873
VL  - 68
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3179/
DO  - 10.5802/aif.3179
LA  - en
ID  - AIF_2018__68_2_847_0
ER  - 
%0 Journal Article
%A Gillibert, Florence
%A Ranieri, Gabriele
%T On the local-global divisibility over abelian varieties
%J Annales de l'Institut Fourier
%D 2018
%P 847-873
%V 68
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3179/
%R 10.5802/aif.3179
%G en
%F AIF_2018__68_2_847_0
Gillibert, Florence; Ranieri, Gabriele. On the local-global divisibility over abelian varieties. Annales de l'Institut Fourier, Tome 68 (2018) no. 2, pp. 847-873. doi : 10.5802/aif.3179. https://aif.centre-mersenne.org/articles/10.5802/aif.3179/

[1] Artin, Emil; Tate, John Class field Theory, Benjamin, 1968, xxvi+259 pages | Zbl

[2] Aschbacher, Michael Finite group theory, Cambridge Studies in Advanced Mathematics, 10, Cambridge University Press, 2000, xi+304 pages | Zbl

[3] Ciperiani, Mirela; Stix, Jakob Weil-Châtelet divisible elements in Tate-Shafarevich groups II: On a question of Cassels, J. Reine Angew. Math., Volume 700 (2015), pp. 175-207 | Zbl

[4] Creutz, Brendan Locally trivial torsors that are not Weil-Châtelet divisible, Bull. Lond. Math. Soc, Volume 45 (2013) no. 5, pp. 935-942 | DOI | Zbl

[5] Creutz, Brendan On the local-global principle for divisibility in the cohomology of elliptic curves, Math. Res. Lett., Volume 23 (2016) no. 2, pp. 377-387 | DOI | Zbl

[6] Dickson, L. E. Canonical forms of Quaternary Abelian Substitutions in an Arbitrary Galois Field, Trans. Am. Math. Soc., Volume 2 (1901), pp. 103-138 | DOI | Zbl

[7] Dieleufait, Luis V. Explicit determination of the images of the Galois representations attached to abelian surfaces with End(A)=, Exp. Math., Volume 11 (2002) no. 4, pp. 503-512 | DOI | Zbl

[8] Dvornicich, Roberto; Zannier, Umberto Local-global divisibility of rational points in some commutative algebraic groups, Bull. Soc. Math. Fr., Volume 129 (2001) no. 3, pp. 317-338 | DOI | Zbl

[9] Dvornicich, Roberto; Zannier, Umberto An analogue for elliptic curves of the Grunwald-Wang example, C. R., Math., Acad. Sci. Paris, Volume 338 (2004) no. 1, pp. 47-50 | DOI | Zbl

[10] Dvornicich, Roberto; Zannier, Umberto On local-global principle for the divisibility of a rational point by a positive integer, Bull. Lond. Math. Soc., Volume 39 (2007), pp. 27-34 | DOI | Zbl

[11] Katz, Nicholas M. Galois properties of torsion points on abelian varieties, Invent. Math., Volume 62 (1981), pp. 481-502 | DOI | Zbl

[12] Lawson, Tyler; Wuthrich, Christian Vanishing of some Galois cohomology groups of elliptic curves, Elliptic Curves, Modular Forms and Iwasawa Theory (Cambridge, 2015) (Springer Proceedings in Mathematics and Statistics), Volume 188 (2017), pp. 373-399 | Zbl

[13] Lombardo, Davide Explicity surjectivity of Galois representations for abelian surfaces and GL 2 -type varieties, J. Algebra, Volume 460 (2016), pp. 26-59 | DOI | Zbl

[14] Merel, Loïc Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., Volume 124 (1996) no. 1-3, pp. 437-449 | DOI | Zbl

[15] Paladino, Laura Local-global divisibility by 4 in elliptic curves defined over , Ann. Mat. Pura Appl., Volume 189 (2010) no. 4, pp. 17-23 | DOI | Zbl

[16] Paladino, Laura On counterexamples to local-global divisibility in commutative algebraic groups, Acta Arith., Volume 148 (2011) no. 1, pp. 21-29 | DOI | Zbl

[17] Paladino, Laura; Ranieri, Gabriele; Viada, Evelina Local-Global Divisibility by p n in elliptic curves, Bull. Lond. Math. Soc., Volume 44 (2012) no. 4, pp. 789-802 | DOI | Zbl

[18] Paladino, Laura; Ranieri, Gabriele; Viada, Evelina On the minimal set for counterexamples to the Local-Global Divisibility principle, J. Algebra, Volume 415 (2014), pp. 290-304 | DOI | Zbl

[19] Sansuc, Jean-Jacques Groupe de Brauer et arithméthique des groupes linéaires sur un corps de nombres, J. Reine Angew. Math., Volume 327 (1981), pp. 12-80 | Zbl

[20] Serre, Jean-Pierre Proprietés Galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972), pp. 259-331 | DOI | Zbl

[21] Suzuki, Michio Group Theory I, Grundlehren der mathematischen Wissenschaften, 247, Springer, 1982, xiv+434 pages | Zbl

[22] Trost, Ernst Zur theorie des Potenzreste, Nieuw Arch. Wiskd., Volume 18 (1948) no. 2, pp. 58-61 | Zbl

Cité par Sources :