From maps between coloured operads to Swiss-Cheese algebras
[Construction d’une algèbre Swiss-Cheese à partir d’un morphisme d’opérades colorées]
Annales de l'Institut Fourier, Tome 68 (2018) no. 2, pp. 661-724.

A partir d’un morphisme d’opérades colorées, on introduit un couple d’espaces topologiques que l’on identifie explicitement à une algèbre sous l’opérade Swiss-Cheese de dimension 1. Nous sommes alors en mesure d’identifier le couple formé des plongements longs et de l’approximation polynomiale des (l)-immersions de d vers n à une algèbre sous l’opérade Swiss-Cheese de dimension d+1.

In the present work, we extract pairs of topological spaces from maps between coloured operads. We prove that those pairs are weakly equivalent to explicit algebras over the one dimensional Swiss-Cheese operad 𝒮𝒞 1 . Thereafter, we show that the pair formed by the space of long embeddings and the manifold calculus limit of (l)-immersions from d to n is an 𝒮𝒞 d+1 -algebra.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3175
Classification : 18D50, 55P35, 57Q45
Keywords: coloured operads, loop spaces, space of knots, model category
Mot clés : opérades colorées, espaces de lacets, espaces de plongements, catégorie modèle

Ducoulombier, Julien 1

1 ETH Zurich Ramistrasse 101 809 Zurich (Switzerland)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2018__68_2_661_0,
     author = {Ducoulombier, Julien},
     title = {From maps between coloured operads to {Swiss-Cheese} algebras},
     journal = {Annales de l'Institut Fourier},
     pages = {661--724},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {68},
     number = {2},
     year = {2018},
     doi = {10.5802/aif.3175},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3175/}
}
TY  - JOUR
AU  - Ducoulombier, Julien
TI  - From maps between coloured operads to Swiss-Cheese algebras
JO  - Annales de l'Institut Fourier
PY  - 2018
SP  - 661
EP  - 724
VL  - 68
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3175/
DO  - 10.5802/aif.3175
LA  - en
ID  - AIF_2018__68_2_661_0
ER  - 
%0 Journal Article
%A Ducoulombier, Julien
%T From maps between coloured operads to Swiss-Cheese algebras
%J Annales de l'Institut Fourier
%D 2018
%P 661-724
%V 68
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3175/
%R 10.5802/aif.3175
%G en
%F AIF_2018__68_2_661_0
Ducoulombier, Julien. From maps between coloured operads to Swiss-Cheese algebras. Annales de l'Institut Fourier, Tome 68 (2018) no. 2, pp. 661-724. doi : 10.5802/aif.3175. https://aif.centre-mersenne.org/articles/10.5802/aif.3175/

[1] Arone, Gregory; Turchin, Victor On the rational homology of high dimensional analogues of spaces of long knots, Geom. Topol., Volume 18 (2014) no. 3, pp. 1261-1322 | DOI | Zbl

[2] Berger, Clemens; Moerdijk, Ieke Axiomatic homotopy theory for operads, Comment. Math. Helv., Volume 78 (2003) no. 4, pp. 805-831 | DOI | Zbl

[3] Berger, Clemens; Moerdijk, Ieke The Boardman-Vogt resolution of operads in monoidal model categories, Topology, Volume 45 (2006) no. 5, pp. 807-849 | DOI | Zbl

[4] Boardman, J. Michael; Vogt, Rainer M. Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, 347, Springer, 1973, x+257 pages | Zbl

[5] Boavida de Brito, Pedro; Weiss, Michael Spaces of smooth embeddings and configuration categories (2015) (https://arxiv.org/abs/1502.01640)

[6] Dobrinskaya, Natalya; Turchin, Victor Homology of non-k-overlapping discs, Homology Homotopy Appl., Volume 17 (2015) no. 2, pp. 261-290 | DOI | Zbl

[7] Ducoulombier, Julien Swiss-cheese action on the totalization of action-operads, Algebr. Geom. Topol., Volume 16 (2016) no. 3, 1683.1726 pages | DOI | Zbl

[8] Ducoulombier, Julien Delooping derived mapping spaces of bimodules over an operad (2017) (https://arxiv.org/abs/1704.07062)

[9] Ducoulombier, Julien; Turchin, Victor Delooping the manifold calculus tower for closed discs (2017) (https://arxiv.org/abs/1708.02203)

[10] Dwyer, William; Hess, Kathryn Long knots and maps between operads, Geom. Topol., Volume 16 (2012) no. 2, pp. 919-955 | DOI | Zbl

[11] Fresse, Benoit Modules over operads and functors, Lecture Notes in Mathematics, 1967, Springer, 2009, ix+308 pages | Zbl

[12] Goodwillie, Thomas G. Calculus. I. The first derivative of pseudoisotopy theory, K-Theory, Volume 4 (1990) no. 1, pp. 1-27 | DOI | MR | Zbl

[13] Goodwillie, Thomas G. Calculus. II. Analytic functors, K-Theory, Volume 5 (1991/92) no. 4, pp. 295-332 | DOI | MR | Zbl

[14] Goodwillie, Thomas G. Calculus. III. Taylor series, Geom. Topol., Volume 7 (2003), pp. 645-711 | DOI | MR | Zbl

[15] Goodwillie, Thomas G.; Klein, John R. Multiple disjunction for spaces of smooth embeddings, J. Topol., Volume 8 (2015) no. 3, pp. 651-674 | DOI | Zbl

[16] Goodwillie, Thomas G.; Weiss, Michael Embeddings from the point of view of immersion theory. II, Geom. Topol., Volume 3 (1999), pp. 103-118 | DOI | MR | Zbl

[17] Hoefel, Eduardo; Livernet, Muriel; Stasheff, Jim A -actions and Recognition of Relative Loop Spaces, Topology Appl., Volume 206 (2016), pp. 126-147 | DOI | Zbl

[18] Hovey, Mark Model categories, Mathematical Surveys and Monographs, 63, American Mathematical Society, 1999, xii+209 pages | Zbl

[19] Kelly, Gregory Maxwell Basic concepts of enriched category theory, London Mathematical Society Lecture Note Series, 64, Cambridge University Press, 1982 | Zbl

[20] Kontsevich, Maxim Operads and motives in deformation quantization, Lett. Math. Phys., Volume 48 (1999) no. 1, pp. 35-72 | DOI | Zbl

[21] May, J. P. The geometry of iterated loop spaces, Lecture Notes in Mathematics, 271, Springer, 1972, ix+175 pages | Zbl

[22] McClure, James E.; Smith, Jeffrey H. Operads and cosimplicial objects: an introduction, Axiomatic, enriched and motivic homotopy theory (NATO Science Series II: Mathematics, Physics and Chemistry), Volume 131, Kluwer Academic Publishers, 2004, pp. 133-171 | DOI | Zbl

[23] Sinha, Dev P. Operads and knot spaces, J. Am. Math. Soc., Volume 19 (2006) no. 2, pp. 461-486 | DOI | Zbl

[24] Turchin, Victor Context-free manifold functor calculus and the Fulton-MacPherson operad, Algebr. Geom. Topol., Volume 13 (2013) no. 3, pp. 1243-1271 | DOI | Zbl

[25] Turchin, Victor Delooping totalization of a multiplicative operad, J. Homotopy Relat. Struct., Volume 9 (2014) no. 2, pp. 349-418 | DOI | MR | Zbl

[26] Vogt, Rainer M. Cofibrant operads and universal E -operads, Topology Appl., Volume 133 (2003) no. 1, pp. 69-87 | DOI | Zbl

[27] Voronov, Alexander A. The Swiss-cheese operad, Homotopy invariant algebraic structure (Baltimore, MD, 1998) (Contemporary Mathematics), Volume 239, American Mathematical Society, 1999, pp. 365-373 | Zbl

[28] Weiss, Michael Embeddings from the point of view of immersion theory. I, Geom. Topol., Volume 3 (1999), pp. 67-101 erratum in ibid. 15 (2011), no. 1, p. 407-409 | DOI | MR | Zbl

Cité par Sources :