Nous donnons une limite supérieure pour la croissance des torsions homologiques de revêtements finis de 3-variétés orientées irréductibles en termes du volume hyperbolique.
We give an upper bound for the growth of homology torsions of finite coverings of irreducible oriented 3-manifolds in terms of the hyperbolic volume.
Révisé le :
Accepté le :
Publié le :
Keywords: Homology torsion, covering, Fuglede-Kadison determinant, hyperbolic volume
Mot clés : torsion homologique, revêtements, déterminant de Fuglede-Kadison, volume hyperbolique
Lê, Thang T. Q. 1
@article{AIF_2018__68_2_611_0, author = {L\^e, Thang T. Q.}, title = {Growth of homology torsion in finite coverings and hyperbolic volume}, journal = {Annales de l'Institut Fourier}, pages = {611--645}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {2}, year = {2018}, doi = {10.5802/aif.3173}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3173/} }
TY - JOUR AU - Lê, Thang T. Q. TI - Growth of homology torsion in finite coverings and hyperbolic volume JO - Annales de l'Institut Fourier PY - 2018 SP - 611 EP - 645 VL - 68 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3173/ DO - 10.5802/aif.3173 LA - en ID - AIF_2018__68_2_611_0 ER -
%0 Journal Article %A Lê, Thang T. Q. %T Growth of homology torsion in finite coverings and hyperbolic volume %J Annales de l'Institut Fourier %D 2018 %P 611-645 %V 68 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3173/ %R 10.5802/aif.3173 %G en %F AIF_2018__68_2_611_0
Lê, Thang T. Q. Growth of homology torsion in finite coverings and hyperbolic volume. Annales de l'Institut Fourier, Tome 68 (2018) no. 2, pp. 611-645. doi : 10.5802/aif.3173. https://aif.centre-mersenne.org/articles/10.5802/aif.3173/
[1] On the growth of -invariants for sequences of lattices in Lie groups (2012) (https://arxiv.org/abs/1210.2961)
[2] Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics, Birkhäuser, 2008, x+334 pages | MR | Zbl
[3] 3-manifold groups, EMS Series of Lectures in Mathematics, European Mathematical Society, 2015, xiv+215 pages | DOI | MR | Zbl
[4] Torsion homology growth and cycle complexity of arithmetic manifolds, Duke Math. J., Volume 165 (2016) no. 9, pp. 1629-1693 | DOI | MR | Zbl
[5] The asymptotic growth of torsion homology for arithmetic groups, J. Inst. Math. Jussieu, Volume 12 (2013) no. 2, pp. 391-447 | DOI | MR | Zbl
[6] Geometrisation of 3-manifolds, EMS Tracts in Mathematics, 13, European Mathematical Society, 2010, x+237 pages | DOI | MR | Zbl
[7] Thick/thin decomposition of three-manifolds and the geometrisation conjecture, Ricci flow and geometric applications (Lecture Notes in Math.), Volume 2166, Springer, 2016, pp. 21-70 | MR
[8] Measure conjugacy invariants for actions of countable sofic groups, J. Am. Math. Soc., Volume 23 (2010) no. 1, pp. 217-245 | DOI | MR | Zbl
[9] Injectivity radii of hyperbolic integer homology 3-spheres, Geom. Topol., Volume 19 (2015) no. 1, pp. 497-523 | DOI | MR | Zbl
[10] Geometry of growth: approximation theorems for invariants, Math. Ann., Volume 311 (1998) no. 2, pp. 335-375 | DOI | MR | Zbl
[11] Knots whose branched cyclic coverings have periodic homology, Trans. Am. Math. Soc., Volume 168 (1972), pp. 357-370 | DOI | MR | Zbl
[12] Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) (London Mathematical Society Lecture Note Series), Volume 182, Cambridge University Press, 1993, pp. 1-295 | MR | Zbl
[13] -Manifolds, Annals of Mathematics Studies, 86, Princeton University Press; University of Tokyo Press, 1976, xii+195 pages | MR | Zbl
[14] Residual finiteness for -manifolds, Combinatorial group theory and topology (Alta, Utah, 1984) (Annals of Mathematics Studies), Volume 111, Princeton University Press, 1987, pp. 379-396 | MR | Zbl
[15] On arithmetic varieties, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), Halsted, New York, 1975, pp. 151-217 | MR | Zbl
[16] Hyperbolic volume, Mahler measure, and homology growth talk at Columbia University (2009), slide available at http://www.math.columbia.edu/~volconf09/notes/leconf.pdf
[17] Homology torsion growth and Mahler measure, Comment. Math. Helv., Volume 89 (2014) no. 3, pp. 719-757 | DOI | MR | Zbl
[18] Approximating -invariants by their finite-dimensional analogues, Geom. Funct. Anal., Volume 4 (1994) no. 4, pp. 455-481 | DOI | MR | Zbl
[19] -torsion and -manifolds, Low-dimensional topology (Knoxville, TN, 1992) (Conference Proceedings and Lecture Notes in Geometry and Topology), Volume 3, International Press, 1994, pp. 75-107 | MR | Zbl
[20] -invariants: theory and applications to geometry and -theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 44, Springer, 2002, xvi+595 pages | DOI | MR | Zbl
[21] Approximating -invariants and homology growth, Geom. Funct. Anal., Volume 23 (2013) no. 2, pp. 622-663 | DOI | MR | Zbl
[22] -torsion of hyperbolic manifolds of finite volume, Geom. Funct. Anal., Volume 9 (1999) no. 3, pp. 518-567 | DOI | MR | Zbl
[23] On the torsion in the cohomology of arithmetic hyperbolic 3-manifolds, Duke Math. J., Volume 162 (2013) no. 5, pp. 863-888 | DOI | MR | Zbl
[24] Higher-dimensional Reidemeister torsion invariants for cusped hyperbolic 3-manifolds, J. Topol., Volume 7 (2014) no. 1, pp. 69-119 | DOI | MR | Zbl
[25] The asymptotics of the Ray-Singer analytic torsion of hyperbolic 3-manifolds, Metric and differential geometry (Progress in Mathematics), Volume 297, Springer, 2012, pp. 317-352 | DOI | MR | Zbl
[26] Introduction to piecewise-linear topology, 69, Springer, 1972, viii+123 pages (Ergebnisse der Mathematik und ihrer Grenzgebiete) | MR | Zbl
[27] Volume and homology growth of aspherical manifolds, Geom. Topol., Volume 20 (2016) no. 2, pp. 1035-1059 | DOI | MR | Zbl
[28] Introduction to combinatorial torsions, Lectures in Mathematics, Birkhäuser, 2001, viii+123 pages | DOI | MR | Zbl
Cité par Sources :