Finiteness of Gibbs measures on noncompact manifolds with pinched negative curvature
Annales de l'Institut Fourier, Volume 68 (2018) no. 2, pp. 457-510.

We characterize the finiteness of Gibbs measures for geodesic flows on negatively curved manifolds by several criteria, analogous to those proposed by Sarig for symbolic dynamical systems over an infinite alphabet. These criteria should be useful in the future to find more examples with finite Gibbs measures. As an application, we recover Dal’bo–Otal–Peigné criterion of finiteness for the Bowen–Margulis measure on geometrically finite hyperbolic manifolds, as well as Peigné’s examples of geometrically infinite manifolds having a finite Bowen–Margulis measure.

Nous donnons plusieurs critères caractérisant la finitude des mesures de Gibbs pour le flot géodésique sur les variétés à courbure négative, analogues à ceux proposés par Sarig pour les sous-décalages sur des alphabets infinis. Ces critères effectifs devraient permettre de trouver davantage d’exemples de mesures de Gibbs finies. En application, nous retrouvons le critère de Dal’bo–Otal–Peigné sur la finitude de la mesure de Bowen–Margulis pour des variétés hyperboliques géométriquement finies, ainsi que les exemples de Peigné de variétés à courbure négative géométriquement infinies possédant une mesure de Bowen–Margulis finie.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3167
Classification: 37D40,  37D35,  28D20,  37A35,  37A40
Keywords: Gibbs measures, thermodynamic formalism, geodesic flow, geometrically infinite manifolds, Kac lemma
License: CC-BY-ND 4.0
@article{AIF_2018__68_2_457_0,
     author = {Pit, Vincent and Schapira, Barbara},
     title = {Finiteness of {Gibbs} measures on noncompact manifolds with pinched negative curvature},
     journal = {Annales de l'Institut Fourier},
     pages = {457--510},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {68},
     number = {2},
     year = {2018},
     doi = {10.5802/aif.3167},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3167/}
}
TY  - JOUR
TI  - Finiteness of Gibbs measures on noncompact manifolds with pinched negative curvature
JO  - Annales de l'Institut Fourier
PY  - 2018
DA  - 2018///
SP  - 457
EP  - 510
VL  - 68
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3167/
UR  - https://doi.org/10.5802/aif.3167
DO  - 10.5802/aif.3167
LA  - en
ID  - AIF_2018__68_2_457_0
ER  - 
%0 Journal Article
%T Finiteness of Gibbs measures on noncompact manifolds with pinched negative curvature
%J Annales de l'Institut Fourier
%D 2018
%P 457-510
%V 68
%N 2
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.3167
%R 10.5802/aif.3167
%G en
%F AIF_2018__68_2_457_0
Pit, Vincent; Schapira, Barbara. Finiteness of Gibbs measures on noncompact manifolds with pinched negative curvature. Annales de l'Institut Fourier, Volume 68 (2018) no. 2, pp. 457-510. doi : 10.5802/aif.3167. https://aif.centre-mersenne.org/articles/10.5802/aif.3167/

[1] Aaronson, Jon An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, Tome 50, American Mathematical Society, Providence, RI, 1997, xii+284 pages | Zbl

[2] Ancona, Alano Exemples de surfaces hyperboliques de type divergent, de mesure de Sullivan associées finies mais non géométriquement finies (unpublished)

[3] Babillot, Martine On the mixing property for hyperbolic systems, Isr. J. Math., Tome 129 (2002), pp. 61-76 | DOI | Zbl

[4] Barreira, Luis; Iommi, Godofredo Suspension flows over countable Markov shifts, J. Stat. Phys., Tome 124 (2006) no. 1, pp. 207-230 | DOI | MR | Zbl

[5] Bowditch, Brian H. Geometrical finiteness with variable negative curvature, Duke Math. J., Tome 77 (1995) no. 1, pp. 229-274 | DOI | Zbl

[6] Bowen, Rufus; Ruelle, David The ergodic theory of Axiom A flows, Invent. Math., Tome 29 (1975) no. 3, pp. 181-202 | DOI | Zbl

[7] Coudène, Yves Gibbs measures on negatively curved manifolds, J. Dyn. Control Syst., Tome 9 (2003) no. 1, pp. 89-101 | DOI | Zbl

[8] Dal’bo, Françoise; Otal, Jean-Pierre; Peigné, Marc Séries de Poincaré des groupes géométriquement finis, Isr. J. Math., Tome 118 (2000), pp. 109-124 | DOI | Zbl

[9] Eberlein, Patrick Geodesic flows on negatively curved manifolds. I, Ann. Math., Tome 95 (1972), pp. 492-510 | DOI | MR | Zbl

[10] Sur les groupes hyperboliques d’après Mikhael Gromov (Ghys, Étienne; de la Harpe, Pierre, eds.), Progress in Mathematics, Tome 83, Birkhäuser, Boston, MA, 1990, xii+285 pages (Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988) | Zbl

[11] Iommi, Godofredo; Jordan, Thomas; Todd, Mike Recurrence and transience for suspension flows, Isr. J. Math., Tome 209 (2015) no. 2, pp. 547-592 | DOI | Zbl

[12] Otal, Jean-Pierre; Peigné, Marc Principe variationnel et groupes kleiniens, Duke Math. J., Tome 125 (2004) no. 1, pp. 15-44 | DOI | Zbl

[13] Parkkonen, Jouni; Paulin, Frédéric Prescribing the behaviour of geodesics in negative curvature, Geom. Topol., Tome 14 (2010) no. 1, pp. 277-392 | DOI | Zbl

[14] Paulin, Frédéric; Pollicott, Mark; Schapira, Barbara Equilibrium states in negative curvature, Astérisque, Tome 373, Société Mathématique de France, 2015, viii+281 pages | MR | Zbl

[15] Peigné, Marc On the Patterson-Sullivan measure of some discrete group of isometries, Isr. J. Math., Tome 133 (2003), pp. 77-88 | DOI | Zbl

[16] Roblin, Thomas Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr., Nouv. Sér., Tome 95, Société Mathématique de France, 2003, vi+96 pages | MR | Zbl

[17] Sarig, Omri Thermodynamic Formalism for countable Markov shifts, Ergodic Theory Dyn. Syst., Tome 19 (1999) no. 6, pp. 1565-1593 | DOI | Zbl

[18] Sarig, Omri Thermodynamic Formalism for Null Recurrent Potentials, Isr. J. Math., Tome 121 (2001), pp. 285-311 | DOI | Zbl

[19] Sullivan, Dennis Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., Tome 153 (1984) no. 3-4, pp. 259-277 | DOI | Zbl

[20] Wright, Fred B. Mean least recurrence time, J. Lond. Math. Soc., Tome 36 (1961), pp. 382-384 | DOI | Zbl

Cited by Sources: