Minimal model program for excellent surfaces
[Programme des modèles minimaux pour des surfaces excellentes]
Annales de l'Institut Fourier, Tome 68 (2018) no. 1, pp. 345-376.

Nous prouvons les résultats prédits par le programme des modèles minimaux pour des surfaces log canoniques et Q-factorielles sur des schémas excellents.

We establish the minimal model program for log canonical and Q-factorial surfaces over excellent base schemes.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3163
Classification : 14E30
Keywords: Minimal models, excellent surfaces, log canonical
Mots-clés : Modèles minimaux, surfaces excellentes, log canonique

Tanaka, Hiromu 1

1 Imperial College, London, Department of Mathematics, 180 Queen’s Gate, London SW7 2AZ (UK)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2018__68_1_345_0,
     author = {Tanaka, Hiromu},
     title = {Minimal model program for excellent surfaces},
     journal = {Annales de l'Institut Fourier},
     pages = {345--376},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {68},
     number = {1},
     year = {2018},
     doi = {10.5802/aif.3163},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3163/}
}
TY  - JOUR
AU  - Tanaka, Hiromu
TI  - Minimal model program for excellent surfaces
JO  - Annales de l'Institut Fourier
PY  - 2018
SP  - 345
EP  - 376
VL  - 68
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3163/
DO  - 10.5802/aif.3163
LA  - en
ID  - AIF_2018__68_1_345_0
ER  - 
%0 Journal Article
%A Tanaka, Hiromu
%T Minimal model program for excellent surfaces
%J Annales de l'Institut Fourier
%D 2018
%P 345-376
%V 68
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3163/
%R 10.5802/aif.3163
%G en
%F AIF_2018__68_1_345_0
Tanaka, Hiromu. Minimal model program for excellent surfaces. Annales de l'Institut Fourier, Tome 68 (2018) no. 1, pp. 345-376. doi : 10.5802/aif.3163. https://aif.centre-mersenne.org/articles/10.5802/aif.3163/

[1] Bădescu, Lucian Algebraic surfaces, Universitext, Springer, 2001, xii+258 pages (Translated from the 1981 Romanian original by Vladimir Maşek and revised by the author) | DOI | MR | Zbl

[2] Beauville, Arnaud Complex algebraic surfaces, London Mathematical Society Lecture Note Series, 68, Cambridge University Press, 1983, iv+132 pages (Translated from the French by R. Barlow, N. I. Shepherd-Barron and M. Reid) | MR | Zbl

[3] Birkar, Caucher; Chen, Yifei; Zhang, Lei Iitaka’s Cn,m conjecture for 3-folds over finite fields (2015) (https://arxiv.org/abs/1507.08760v2)

[4] Cascini, Paolo; Tanaka, Hiromu; Xu, Chenyang On base point freeness in positive characteristic, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015) no. 5, pp. 1239-1272 | DOI | MR | Zbl

[5] Fantechi, Barbara; Göttsche, Lothar; Illusie, Luc; Kleiman, Steven L.; Nitsure, Nitin; Vistoli, Angelo Fundamental algebraic geometry: Grothendieck’s FGA explained, Mathematical Surveys and Monographs, 123, American Mathematical Society, 2005, x+339 pages | MR | Zbl

[6] Fujino, Osamu Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci., Volume 47 (2011) no. 3, pp. 727-789 | DOI | MR | Zbl

[7] Fujino, Osamu Minimal model theory for log surfaces, Publ. Res. Inst. Math. Sci., Volume 48 (2012) no. 2, pp. 339-371 | DOI | MR | Zbl

[8] Fujino, Osamu; Tanaka, Hiromu On log surfaces, Proc. Japan Acad. Ser. A, Volume 88 (2012) no. 8, pp. 109-114 | DOI | MR | Zbl

[9] Hacon, Christopher D.; Xu, Chenyang On finiteness of B-representations and semi-log canonical abundance, Minimal models and extremal rays (Kyoto, 2011) (Advanced Studies in Pure Mathematics), Volume 70, Mathematical Society of Japan, 2016, pp. 361-377 | MR | Zbl

[10] Hartshorne, Robin Residues and duality, Lecture Notes in Mathematics, 20, Springer, 1966, vii+423 pages (with an appendix by P. Deligne) | MR | Zbl

[11] Hartshorne, Robin Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | MR | Zbl

[12] Kawamata, Yujiro; Matsuda, Katsumi; Matsuki, Kenji Introduction to the minimal model problem, Algebraic geometry (Sendai, 1985) (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 283-360 | MR | Zbl

[13] Keel, Seán Basepoint freeness for nef and big line bundles in positive characteristic, Ann. Math., Volume 149 (1999) no. 1, pp. 253-286 | DOI | MR | Zbl

[14] Keeler, Dennis S. Ample filters of invertible sheaves, J. Algebra, Volume 259 (2003) no. 1, pp. 243-283 | DOI | MR | Zbl

[15] Kleiman, Steven L. Toward a numerical theory of ampleness, Ann. Math., Volume 84 (1966), pp. 293-344 | DOI | MR | Zbl

[16] Kollár, János Singularities of the minimal model program, Cambridge Tracts in Mathematics, 200, Cambridge University Press, 2013, x+370 pages (With a collaboration of Sándor Kovács) | DOI | MR | Zbl

[17] Kollár, János; Kovács, Sándor Birational geometry of log surfaces (preprint available at https://sites.math.washington.edu/~kovacs/pdf/BiratLogSurf.pdf)

[18] Kollár, János; Mori, Shigefumi Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | DOI | MR | Zbl

[19] Lazarsfeld, Robert Positivity in algebraic geometry. I: Classical setting: Line bundles and linear series, Springer, 2004, xviii+387 pages | Zbl

[20] Lazarsfeld, Robert Positivity in algebraic geometry. II: Positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3 Folge., 49, Springer, 2004, xvii+385 pages | DOI | MR | Zbl

[21] Lipman, Joseph Desingularization of two-dimensional schemes, Ann. Math., Volume 107 (1978) no. 1, pp. 151-207 | DOI | MR | Zbl

[22] Liu, Qing Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2002, xvi+576 pages (Translated from the French by Reinie Erné) | MR | Zbl

[23] Matsumura, Hideyuki Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989, xiv+320 pages (Translated from the Japanese by M. Reid) | MR | Zbl

[24] Miyanishi, Masayoshi Noncomplete algebraic surfaces, Lecture Notes in Mathematics, 857, Springer, 1981, xviii+244 pages | MR | Zbl

[25] Sakai, Fumio Classification of normal surfaces, Algebraic geometry, Bowdoin 1985 (Brunswick, 1985) (Proceedings of Symposia in Pure Mathematics), Volume 46, American Mathematical Society, 1987, pp. 451-465 | MR | Zbl

[26] Schwede, Karl F-adjunction, Algebra Number Theory, Volume 3 (2009) no. 8, pp. 907-950 | DOI | MR | Zbl

[27] Schwede, Karl; Tucker, Kevin On the behavior of test ideals under finite morphisms, J. Algebr. Geom., Volume 23 (2014) no. 3, pp. 399-443 | DOI | MR | Zbl

[28] Seidenberg, Abraham The hyperplane sections of normal varieties, Trans. Am. Math. Soc., Volume 69 (1950), pp. 357-386 | DOI | MR | Zbl

[29] Shafarevich, I. R. Lectures on minimal models and birational transformations of two dimensional schemes, Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Mathematics, 37, Tata Institute of Fundamental Research, 1966, iv+175 pages | MR | Zbl

[30] Tanaka, Hiromu Minimal models and abundance for positive characteristic log surfaces, Nagoya Math. J., Volume 216 (2014), pp. 1-70 | DOI | MR | Zbl

[31] Tanaka, Hiromu The X-method for klt surfaces in positive characteristic, J. Algebr. Geom., Volume 24 (2015) no. 4, pp. 605-628 | DOI | MR | Zbl

[32] Tanaka, Hiromu Behavior of canonical divisors under purely inseparable base changes (2016) (https://arxiv.org/abs/1502.01381v4, to appear in J. Reine Angew. Math.)

[33] Tanaka, Hiromu Pathologies on Mori fibre spaces in positive characteristic (2016) (https://arxiv.org/abs/1609.00574v2)

  • Bansal, Ashima; Majumder, Souradeep Seshadri constants and related conjectures over characteristic zero fields, Bulletin des Sciences Mathématiques, Volume 202 (2025), p. 103617 | DOI:10.1016/j.bulsci.2025.103617
  • Bernasconi, Fabio Counterexamples to the MMP for 1-foliations in positive characteristic, ANNALI DELL'UNIVERSITA' DI FERRARA, Volume 70 (2024) no. 3, p. 631 | DOI:10.1007/s11565-024-00488-7
  • Han, Jing Jun; Luo, Yu Jie A Simple Proof of ACC for Minimal Log Discrepancies for Surfaces, Acta Mathematica Sinica, English Series, Volume 40 (2024) no. 2, p. 425 | DOI:10.1007/s10114-023-2094-x
  • Stigant, Liam Termination of threefold flips in mixed characteristic, Bulletin of the London Mathematical Society, Volume 56 (2024) no. 1, p. 72 | DOI:10.1112/blms.12914
  • Witaszek, Jakub Relative semiampleness in mixed characteristic, Duke Mathematical Journal, Volume 173 (2024) no. 9 | DOI:10.1215/00127094-2023-0053
  • Bernasconi, Fabio; Martin, Gebhard Bounding geometrically integral del Pezzo surfaces, Forum of Mathematics, Sigma, Volume 12 (2024) | DOI:10.1017/fms.2024.80
  • Bernasconi, Fabio; Brivio, Iacopo; Kawakami, Tatsuro; Witaszek, Jakub Lifting globally 𝐹-split surfaces to characteristic zero, Journal für die reine und angewandte Mathematik (Crelles Journal) (2024) | DOI:10.1515/crelle-2024-0058
  • Bernasconi, Fabio; Brivio, Iacopo; Stigant, Liam Abundance theorem for threefolds in mixed characteristic, Mathematische Annalen, Volume 388 (2024) no. 1, p. 141 | DOI:10.1007/s00208-022-02514-5
  • Xie, Lingyao; Xue, Qingyuan On the Termination of the MMP for Semistable Fourfolds in Mixed Characteristic, Michigan Mathematical Journal, Volume 74 (2024) no. 5 | DOI:10.1307/mmj/20216172
  • Arvidsson, Emelie; Bernasconi, Fabio; Patakfalvi, Zsolt On the properness of the moduli space of stable surfaces over Z [1/30], Moduli, Volume 1 (2024) | DOI:10.1112/mod.2024.1
  • Chen, Guodu; Han, Jingjun; Xue, Qingyuan Boundedness of Complements for Log Calabi–Yau Threefolds, Peking Mathematical Journal, Volume 7 (2024) no. 1, p. 1 | DOI:10.1007/s42543-022-00057-x
  • Kawakami, Tatsuro; Takamatsu, Teppei; Tanaka, Hiromu; Witaszek, Jakub; Yobuko, Fuetaro; Yoshikawa, Shou Quasi‐F‐splittings in birational geometry II, Proceedings of the London Mathematical Society, Volume 128 (2024) no. 4 | DOI:10.1112/plms.12593
  • Tanaka, Hiromu Boundedness of regular del Pezzo surfaces over imperfect fields, manuscripta mathematica, Volume 174 (2024) no. 1-2, p. 355 | DOI:10.1007/s00229-023-01517-z
  • Garge, Shripad M.; Pramanik, Arghya Seshadri constants over fields of characteristic zero, Bulletin des Sciences Mathématiques, Volume 182 (2023), p. 103209 | DOI:10.1016/j.bulsci.2022.103209
  • Hacon, Christopher; Witaszek, Jakub On the relative minimal model program for fourfolds in positive and mixed characteristic, Forum of Mathematics, Pi, Volume 11 (2023) | DOI:10.1017/fmp.2023.6
  • Koseki, Naoki On the Bogomolov–Gieseker Inequality in Positive Characteristic, International Mathematics Research Notices, Volume 2023 (2023) no. 24, p. 20784 | DOI:10.1093/imrn/rnac260
  • Bernasconi, Fabio; Kollár, János Vanishing Theorems for Three-folds in Characteristicp> 5, International Mathematics Research Notices, Volume 2023 (2023) no. 4, p. 2846 | DOI:10.1093/imrn/rnab316
  • Takamatsu, Teppei; Yoshikawa, Shou Minimal model program for semi-stable threefolds in mixed characteristic, Journal of Algebraic Geometry, Volume 32 (2023) no. 3, p. 429 | DOI:10.1090/jag/813
  • Han, Jingjun; Luo, Yujie ON BOUNDEDNESS OF DIVISORS COMPUTING MINIMAL LOG DISCREPANCIES FOR SURFACES, Journal of the Institute of Mathematics of Jussieu, Volume 22 (2023) no. 6, p. 2907 | DOI:10.1017/s1474748022000299
  • Stigant, Liam On the boundedness of globally F-split varieties, Mathematische Zeitschrift, Volume 303 (2023) no. 4 | DOI:10.1007/s00209-023-03236-3
  • BERNASCONI, FABIO; STIGANT, LIAM SEMIAMPLENESS FOR CALABI–YAU SURFACES IN POSITIVE AND MIXED CHARACTERISTIC, Nagoya Mathematical Journal, Volume 250 (2023), p. 365 | DOI:10.1017/nmj.2022.32
  • Bhatt, Bhargav; Ma, Linquan; Patakfalvi, Zsolt; Schwede, Karl; Tucker, Kevin; Waldron, Joe; Witaszek, Jakub Globally ++-regular varieties and the minimal model program for threefolds in mixed characteristic, Publications mathématiques de l'IHÉS, Volume 138 (2023) no. 1, p. 69 | DOI:10.1007/s10240-023-00140-8
  • Kawakami, Tatsuro Bogomolov-Sommese vanishing and liftability for surface pairs in positive characteristic, Advances in Mathematics, Volume 409 (2022), p. 108640 | DOI:10.1016/j.aim.2022.108640
  • Zhang, Lei Frobenius stable pluricanonical systems on threefolds of general type in positive characteristic, Algebra Number Theory, Volume 16 (2022) no. 10, p. 2339 | DOI:10.2140/ant.2022.16.2339
  • Arvidsson, Emelie; Bernasconi, Fabio; Lacini, Justin On the Kawamata–Viehweg vanishing theorem for log del Pezzo surfaces in positive characteristic, Compositio Mathematica, Volume 158 (2022) no. 4, p. 750 | DOI:10.1112/s0010437x22007394
  • Hacon, Christopher; Witaszek, Jakub The minimal model program for threefolds in characteristic 5, Duke Mathematical Journal, Volume 171 (2022) no. 11 | DOI:10.1215/00127094-2022-0024
  • Ma, Linquan; Schwede, Karl; Tucker, Kevin; Waldron, Joe; Witaszek, Jakub An analogue of adjoint ideals and PLT singularities in mixed characteristic, Journal of Algebraic Geometry, Volume 31 (2022) no. 3, p. 497 | DOI:10.1090/jag/797
  • Bernasconi, Fabio; Tanaka, Hiromu ON DEL PEZZO FIBRATIONS IN POSITIVE CHARACTERISTIC, Journal of the Institute of Mathematics of Jussieu, Volume 21 (2022) no. 1, p. 197 | DOI:10.1017/s1474748020000067
  • Das, Omprokash; Waldron, Joe On the log minimal model program for threefolds over imperfect fields of characteristic p>5p>5, Journal of the London Mathematical Society, Volume 106 (2022) no. 4, p. 3895 | DOI:10.1112/jlms.12677
  • Hacon, Christopher; Witaszek, Jakub On the Relative Minimal Model Program for Threefolds in Low Characteristics, Peking Mathematical Journal, Volume 5 (2022) no. 2, p. 365 | DOI:10.1007/s42543-021-00037-7
  • Kollár, János Relative mmp without Q-factoriality, Electronic Research Archive, Volume 29 (2021) no. 5, p. 3193 | DOI:10.3934/era.2021033
  • Das, Omprokash On the Boundedness of Anti-Canonical Volumes of Singular Fano3-Folds in Characteristicp> 5, International Mathematics Research Notices, Volume 2021 (2021) no. 9, p. 6848 | DOI:10.1093/imrn/rnz048
  • Graf, Patrick Differential forms on log canonical spaces in positive characteristic, Journal of the London Mathematical Society, Volume 104 (2021) no. 5, p. 2208 | DOI:10.1112/jlms.12495
  • Tanaka, Hiromu On p‐power freeness in positive characteristic, Mathematische Nachrichten, Volume 294 (2021) no. 10, p. 1968 | DOI:10.1002/mana.202000118
  • Arvidsson, Emelie On the Kodaira vanishing theorem for log del Pezzo surfaces in positive characteristic, Mathematische Zeitschrift, Volume 299 (2021) no. 3-4, p. 2199 | DOI:10.1007/s00209-021-02742-6
  • MURAYAMA, TAKUMI THE GAMMA CONSTRUCTION AND ASYMPTOTIC INVARIANTS OF LINE BUNDLES OVER ARBITRARY FIELDS, Nagoya Mathematical Journal, Volume 242 (2021), p. 165 | DOI:10.1017/nmj.2019.27
  • EGBERT, ANDREW; HACON, CHRISTOPHER D. INVARIANCE OF CERTAIN PLURIGENERA FOR SURFACES IN MIXED CHARACTERISTICS, Nagoya Mathematical Journal, Volume 243 (2021), p. 1 | DOI:10.1017/nmj.2019.28
  • Fujino, Osamu On Minimal Model Theory for Algebraic Log Surfaces, Taiwanese Journal of Mathematics, Volume 25 (2021) no. 3 | DOI:10.11650/tjm/210102
  • Nakamura, Yusuke; Tanaka, Hiromu A Witt Nadel vanishing theorem for threefolds, Compositio Mathematica, Volume 156 (2020) no. 3, p. 435 | DOI:10.1112/s0010437x1900770x
  • Tanaka, Hiromu Abundance theorem for surfaces over imperfect fields, Mathematische Zeitschrift, Volume 295 (2020) no. 1-2, p. 595 | DOI:10.1007/s00209-019-02345-2

Cité par 40 documents. Sources : Crossref