[Programme des modèles minimaux pour des surfaces excellentes]
Nous prouvons les résultats prédits par le programme des modèles minimaux pour des surfaces log canoniques et Q-factorielles sur des schémas excellents.
We establish the minimal model program for log canonical and Q-factorial surfaces over excellent base schemes.
Révisé le :
Accepté le :
Publié le :
Keywords: Minimal models, excellent surfaces, log canonical
Mots-clés : Modèles minimaux, surfaces excellentes, log canonique
Tanaka, Hiromu 1

@article{AIF_2018__68_1_345_0, author = {Tanaka, Hiromu}, title = {Minimal model program for excellent surfaces}, journal = {Annales de l'Institut Fourier}, pages = {345--376}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {1}, year = {2018}, doi = {10.5802/aif.3163}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3163/} }
TY - JOUR AU - Tanaka, Hiromu TI - Minimal model program for excellent surfaces JO - Annales de l'Institut Fourier PY - 2018 SP - 345 EP - 376 VL - 68 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3163/ DO - 10.5802/aif.3163 LA - en ID - AIF_2018__68_1_345_0 ER -
%0 Journal Article %A Tanaka, Hiromu %T Minimal model program for excellent surfaces %J Annales de l'Institut Fourier %D 2018 %P 345-376 %V 68 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3163/ %R 10.5802/aif.3163 %G en %F AIF_2018__68_1_345_0
Tanaka, Hiromu. Minimal model program for excellent surfaces. Annales de l'Institut Fourier, Tome 68 (2018) no. 1, pp. 345-376. doi : 10.5802/aif.3163. https://aif.centre-mersenne.org/articles/10.5802/aif.3163/
[1] Algebraic surfaces, Universitext, Springer, 2001, xii+258 pages (Translated from the 1981 Romanian original by Vladimir Maşek and revised by the author) | DOI | MR | Zbl
[2] Complex algebraic surfaces, London Mathematical Society Lecture Note Series, 68, Cambridge University Press, 1983, iv+132 pages (Translated from the French by R. Barlow, N. I. Shepherd-Barron and M. Reid) | MR | Zbl
[3] Iitaka’s
[4] On base point freeness in positive characteristic, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015) no. 5, pp. 1239-1272 | DOI | MR | Zbl
[5] Fundamental algebraic geometry: Grothendieck’s FGA explained, Mathematical Surveys and Monographs, 123, American Mathematical Society, 2005, x+339 pages | MR | Zbl
[6] Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci., Volume 47 (2011) no. 3, pp. 727-789 | DOI | MR | Zbl
[7] Minimal model theory for log surfaces, Publ. Res. Inst. Math. Sci., Volume 48 (2012) no. 2, pp. 339-371 | DOI | MR | Zbl
[8] On log surfaces, Proc. Japan Acad. Ser. A, Volume 88 (2012) no. 8, pp. 109-114 | DOI | MR | Zbl
[9] On finiteness of B-representations and semi-log canonical abundance, Minimal models and extremal rays (Kyoto, 2011) (Advanced Studies in Pure Mathematics), Volume 70, Mathematical Society of Japan, 2016, pp. 361-377 | MR | Zbl
[10] Residues and duality, Lecture Notes in Mathematics, 20, Springer, 1966, vii+423 pages (with an appendix by P. Deligne) | MR | Zbl
[11] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | MR | Zbl
[12] Introduction to the minimal model problem, Algebraic geometry (Sendai, 1985) (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 283-360 | MR | Zbl
[13] Basepoint freeness for nef and big line bundles in positive characteristic, Ann. Math., Volume 149 (1999) no. 1, pp. 253-286 | DOI | MR | Zbl
[14] Ample filters of invertible sheaves, J. Algebra, Volume 259 (2003) no. 1, pp. 243-283 | DOI | MR | Zbl
[15] Toward a numerical theory of ampleness, Ann. Math., Volume 84 (1966), pp. 293-344 | DOI | MR | Zbl
[16] Singularities of the minimal model program, Cambridge Tracts in Mathematics, 200, Cambridge University Press, 2013, x+370 pages (With a collaboration of Sándor Kovács) | DOI | MR | Zbl
[17] Birational geometry of log surfaces (preprint available at https://sites.math.washington.edu/~kovacs/pdf/BiratLogSurf.pdf)
[18] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | DOI | MR | Zbl
[19] Positivity in algebraic geometry. I: Classical setting: Line bundles and linear series, Springer, 2004, xviii+387 pages | Zbl
[20] Positivity in algebraic geometry. II: Positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3 Folge., 49, Springer, 2004, xvii+385 pages | DOI | MR | Zbl
[21] Desingularization of two-dimensional schemes, Ann. Math., Volume 107 (1978) no. 1, pp. 151-207 | DOI | MR | Zbl
[22] Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2002, xvi+576 pages (Translated from the French by Reinie Erné) | MR | Zbl
[23] Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989, xiv+320 pages (Translated from the Japanese by M. Reid) | MR | Zbl
[24] Noncomplete algebraic surfaces, Lecture Notes in Mathematics, 857, Springer, 1981, xviii+244 pages | MR | Zbl
[25] Classification of normal surfaces, Algebraic geometry, Bowdoin 1985 (Brunswick, 1985) (Proceedings of Symposia in Pure Mathematics), Volume 46, American Mathematical Society, 1987, pp. 451-465 | MR | Zbl
[26]
[27] On the behavior of test ideals under finite morphisms, J. Algebr. Geom., Volume 23 (2014) no. 3, pp. 399-443 | DOI | MR | Zbl
[28] The hyperplane sections of normal varieties, Trans. Am. Math. Soc., Volume 69 (1950), pp. 357-386 | DOI | MR | Zbl
[29] Lectures on minimal models and birational transformations of two dimensional schemes, Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Mathematics, 37, Tata Institute of Fundamental Research, 1966, iv+175 pages | MR | Zbl
[30] Minimal models and abundance for positive characteristic log surfaces, Nagoya Math. J., Volume 216 (2014), pp. 1-70 | DOI | MR | Zbl
[31] The X-method for klt surfaces in positive characteristic, J. Algebr. Geom., Volume 24 (2015) no. 4, pp. 605-628 | DOI | MR | Zbl
[32] Behavior of canonical divisors under purely inseparable base changes (2016) (https://arxiv.org/abs/1502.01381v4, to appear in J. Reine Angew. Math.)
[33] Pathologies on Mori fibre spaces in positive characteristic (2016) (https://arxiv.org/abs/1609.00574v2)
- Seshadri constants and related conjectures over characteristic zero fields, Bulletin des Sciences Mathématiques, Volume 202 (2025), p. 103617 | DOI:10.1016/j.bulsci.2025.103617
- Counterexamples to the MMP for 1-foliations in positive characteristic, ANNALI DELL'UNIVERSITA' DI FERRARA, Volume 70 (2024) no. 3, p. 631 | DOI:10.1007/s11565-024-00488-7
- A Simple Proof of ACC for Minimal Log Discrepancies for Surfaces, Acta Mathematica Sinica, English Series, Volume 40 (2024) no. 2, p. 425 | DOI:10.1007/s10114-023-2094-x
- Termination of threefold flips in mixed characteristic, Bulletin of the London Mathematical Society, Volume 56 (2024) no. 1, p. 72 | DOI:10.1112/blms.12914
- Relative semiampleness in mixed characteristic, Duke Mathematical Journal, Volume 173 (2024) no. 9 | DOI:10.1215/00127094-2023-0053
- Bounding geometrically integral del Pezzo surfaces, Forum of Mathematics, Sigma, Volume 12 (2024) | DOI:10.1017/fms.2024.80
- Lifting globally 𝐹-split surfaces to characteristic zero, Journal für die reine und angewandte Mathematik (Crelles Journal) (2024) | DOI:10.1515/crelle-2024-0058
- Abundance theorem for threefolds in mixed characteristic, Mathematische Annalen, Volume 388 (2024) no. 1, p. 141 | DOI:10.1007/s00208-022-02514-5
- On the Termination of the MMP for Semistable Fourfolds in Mixed Characteristic, Michigan Mathematical Journal, Volume 74 (2024) no. 5 | DOI:10.1307/mmj/20216172
- On the properness of the moduli space of stable surfaces over
[1/30], Moduli, Volume 1 (2024) | DOI:10.1112/mod.2024.1 - Boundedness of Complements for Log Calabi–Yau Threefolds, Peking Mathematical Journal, Volume 7 (2024) no. 1, p. 1 | DOI:10.1007/s42543-022-00057-x
- Quasi‐F‐splittings in birational geometry II, Proceedings of the London Mathematical Society, Volume 128 (2024) no. 4 | DOI:10.1112/plms.12593
- Boundedness of regular del Pezzo surfaces over imperfect fields, manuscripta mathematica, Volume 174 (2024) no. 1-2, p. 355 | DOI:10.1007/s00229-023-01517-z
- Seshadri constants over fields of characteristic zero, Bulletin des Sciences Mathématiques, Volume 182 (2023), p. 103209 | DOI:10.1016/j.bulsci.2022.103209
- On the relative minimal model program for fourfolds in positive and mixed characteristic, Forum of Mathematics, Pi, Volume 11 (2023) | DOI:10.1017/fmp.2023.6
- On the Bogomolov–Gieseker Inequality in Positive Characteristic, International Mathematics Research Notices, Volume 2023 (2023) no. 24, p. 20784 | DOI:10.1093/imrn/rnac260
- Vanishing Theorems for Three-folds in Characteristicp> 5, International Mathematics Research Notices, Volume 2023 (2023) no. 4, p. 2846 | DOI:10.1093/imrn/rnab316
- Minimal model program for semi-stable threefolds in mixed characteristic, Journal of Algebraic Geometry, Volume 32 (2023) no. 3, p. 429 | DOI:10.1090/jag/813
- ON BOUNDEDNESS OF DIVISORS COMPUTING MINIMAL LOG DISCREPANCIES FOR SURFACES, Journal of the Institute of Mathematics of Jussieu, Volume 22 (2023) no. 6, p. 2907 | DOI:10.1017/s1474748022000299
- On the boundedness of globally F-split varieties, Mathematische Zeitschrift, Volume 303 (2023) no. 4 | DOI:10.1007/s00209-023-03236-3
- SEMIAMPLENESS FOR CALABI–YAU SURFACES IN POSITIVE AND MIXED CHARACTERISTIC, Nagoya Mathematical Journal, Volume 250 (2023), p. 365 | DOI:10.1017/nmj.2022.32
- Globally
-regular varieties and the minimal model program for threefolds in mixed characteristic, Publications mathématiques de l'IHÉS, Volume 138 (2023) no. 1, p. 69 | DOI:10.1007/s10240-023-00140-8 - Bogomolov-Sommese vanishing and liftability for surface pairs in positive characteristic, Advances in Mathematics, Volume 409 (2022), p. 108640 | DOI:10.1016/j.aim.2022.108640
- Frobenius stable pluricanonical systems on threefolds of general type in positive characteristic, Algebra Number Theory, Volume 16 (2022) no. 10, p. 2339 | DOI:10.2140/ant.2022.16.2339
- On the Kawamata–Viehweg vanishing theorem for log del Pezzo surfaces in positive characteristic, Compositio Mathematica, Volume 158 (2022) no. 4, p. 750 | DOI:10.1112/s0010437x22007394
- The minimal model program for threefolds in characteristic 5, Duke Mathematical Journal, Volume 171 (2022) no. 11 | DOI:10.1215/00127094-2022-0024
- An analogue of adjoint ideals and PLT singularities in mixed characteristic, Journal of Algebraic Geometry, Volume 31 (2022) no. 3, p. 497 | DOI:10.1090/jag/797
- ON DEL PEZZO FIBRATIONS IN POSITIVE CHARACTERISTIC, Journal of the Institute of Mathematics of Jussieu, Volume 21 (2022) no. 1, p. 197 | DOI:10.1017/s1474748020000067
- On the log minimal model program for threefolds over imperfect fields of characteristic p>5
, Journal of the London Mathematical Society, Volume 106 (2022) no. 4, p. 3895 | DOI:10.1112/jlms.12677 - On the Relative Minimal Model Program for Threefolds in Low Characteristics, Peking Mathematical Journal, Volume 5 (2022) no. 2, p. 365 | DOI:10.1007/s42543-021-00037-7
- Relative mmp without
-factoriality, Electronic Research Archive, Volume 29 (2021) no. 5, p. 3193 | DOI:10.3934/era.2021033 - On the Boundedness of Anti-Canonical Volumes of Singular Fano3-Folds in Characteristicp> 5, International Mathematics Research Notices, Volume 2021 (2021) no. 9, p. 6848 | DOI:10.1093/imrn/rnz048
- Differential forms on log canonical spaces in positive characteristic, Journal of the London Mathematical Society, Volume 104 (2021) no. 5, p. 2208 | DOI:10.1112/jlms.12495
- On p‐power freeness in positive characteristic, Mathematische Nachrichten, Volume 294 (2021) no. 10, p. 1968 | DOI:10.1002/mana.202000118
- On the Kodaira vanishing theorem for log del Pezzo surfaces in positive characteristic, Mathematische Zeitschrift, Volume 299 (2021) no. 3-4, p. 2199 | DOI:10.1007/s00209-021-02742-6
- THE GAMMA CONSTRUCTION AND ASYMPTOTIC INVARIANTS OF LINE BUNDLES OVER ARBITRARY FIELDS, Nagoya Mathematical Journal, Volume 242 (2021), p. 165 | DOI:10.1017/nmj.2019.27
- INVARIANCE OF CERTAIN PLURIGENERA FOR SURFACES IN MIXED CHARACTERISTICS, Nagoya Mathematical Journal, Volume 243 (2021), p. 1 | DOI:10.1017/nmj.2019.28
- On Minimal Model Theory for Algebraic Log Surfaces, Taiwanese Journal of Mathematics, Volume 25 (2021) no. 3 | DOI:10.11650/tjm/210102
- A Witt Nadel vanishing theorem for threefolds, Compositio Mathematica, Volume 156 (2020) no. 3, p. 435 | DOI:10.1112/s0010437x1900770x
- Abundance theorem for surfaces over imperfect fields, Mathematische Zeitschrift, Volume 295 (2020) no. 1-2, p. 595 | DOI:10.1007/s00209-019-02345-2
Cité par 40 documents. Sources : Crossref