We collect several old and new descriptions of Schatten class Toeplitz operators on the Paley–Wiener space and answer a question on discrete Hilbert transform commutators posed by Richard Rochberg.
Nous présentons plusieurs descriptions anciennes et nouvelles des opérateurs de Toeplitz de classe de Schatten sur l’espace de Paley-Wiener et répondons à une question de Richard Rochberg sur les commutateurs discrets de la transformée de Hilbert.
Accepted:
Published online:
Classification: 47B35, 46E39
Keywords: Paley–Wiener space, Schatten ideal, discrete Besov space, discrete Hilbert transform commutator
Author's affiliations:
@article{AIF_2018__68_1_195_0, author = {Bessonov, R.~V.}, title = {Schatten properties of {Toeplitz} operators on the {Paley{\textendash}Wiener} space}, journal = {Annales de l'Institut Fourier}, pages = {195--215}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {1}, year = {2018}, doi = {10.5802/aif.3157}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3157/} }
TY - JOUR TI - Schatten properties of Toeplitz operators on the Paley–Wiener space JO - Annales de l'Institut Fourier PY - 2018 DA - 2018/// SP - 195 EP - 215 VL - 68 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3157/ UR - https://doi.org/10.5802/aif.3157 DO - 10.5802/aif.3157 LA - en ID - AIF_2018__68_1_195_0 ER -
Bessonov, R. V. Schatten properties of Toeplitz operators on the Paley–Wiener space. Annales de l'Institut Fourier, Volume 68 (2018) no. 1, pp. 195-215. doi : 10.5802/aif.3157. https://aif.centre-mersenne.org/articles/10.5802/aif.3157/
[1] Fredholmness and compactness of truncated Toeplitz and Hankel operators, Integral Equations Oper. Theory, Volume 82 (2015) no. 4, pp. 451-467 | Article | Zbl: 1335.47015
[2] Lectures on entire functions, Translations of Mathematical Monographs, Volume 150, American Mathematical Society, 1996 | Zbl: 0856.30001
[3] Schatten-class truncated Toeplitz operators, Proc. Am. Math. Soc., Volume 144 (2016) no. 2, pp. 637-649 | Article | Zbl: 1337.47030
[4] New thoughts on Besov spaces, Duke University Mathematics Series, Volume 1, Mathematics Department, Duke University, 1976 | Zbl: 0356.46038
[5] Wiener–Hopf operators on a finite interval and Schatten–von Neumann classes, Proc. Am. Math. Soc., Volume 104 (1988) no. 2, pp. 479-486 | Article | Zbl: 0692.47027
[6] Hankel operators and their applications, Springer Monographs in Mathematics, Springer, 2003, xvi+784 pages | MR: 1949210 (2004e:47040) | Zbl: 1030.47002
[7] Fonctions entières et intégrales de Fourier multiples, Comment. Math. Helv., Volume 10 (1937) no. 1, pp. 110-163 | Article | Zbl: 0018.15204
[8] Decomposition theorems for Bergman spaces and their applications, Operators and function theory (NATO ASI Series. Series C: Mathematical and Physical Sciences) Volume 153, D. Reidel Publishing Company, 1985, pp. 225-277 | Zbl: 0594.46020
[9] Toeplitz and Hankel operators on the Paley–Wiener space, Integral Equations Oper. Theory, Volume 10 (1987) no. 2, pp. 187-235 | Article | MR: 878246 (88c:47048) | Zbl: 0634.47024
[10] The reproducing kernel thesis for Toeplitz operators on the Paley–Wiener space, Integral Equations Oper. Theory, Volume 49 (2004) no. 1, pp. 111-122 | Article | Zbl: 1069.47029
[11] Spaces of sequences, sampling theorem, and functions of exponential type, Studia Mathematica, Volume 100 (1991) no. 1, pp. 51-74 | Article | Zbl: 0751.46012
[12] Mean oscillation of functions and the Paley-Wiener space, J. Fourier Anal. Appl., Volume 4 (1998) no. 3, pp. 283-297 | Article | Zbl: 0914.42011
Cited by Sources: