Non locally trivializable CR line bundles over compact Lorentzian CR manifolds
Annales de l'Institut Fourier, Volume 68 (2018) no. 1, pp. 101-108.

We consider compact CR manifolds of arbitrary CR codimension that satisfy certain geometric conditions in terms of their Levi form. Over these compact CR manifolds, we construct a deformation of the trivial CR line bundle over M which is topologically trivial over M but fails to be even locally CR trivializable over any open subset of M. In particular, our results apply to compact Lorentzian CR manifolds of hypersurface type.

On considère une variété CR compacte de codimension CR quelconque qui vérifie certaines conditions géométriques en terme de sa forme de Levi. Sur ces variétés CR compactes, on construit une déformation du fibré en droites CR trivial sur M qui est topologiquement trivial sur M mais qui n’admet même pas de trivialization CR locale sur un ouvert arbitraire de M. En particulier, nos résultats s’appliquent au cas de variétés CR compactes Lorentziennes du type hypersurface.

Received:
Accepted:
Published online:
DOI: 10.5802/aif.3152
Classification: 32V05,  32G07
Keywords: CR vector bundles, local frames, Lorentzian CR manifolds
Brinkschulte, Judith 1; Hill, C. Denson 2

1 Universität Leipzig Mathematisches Institut Augustusplatz 10 D-04109 Leipzig (Germany)
2 Stony Brook University Department of Mathematics Stony Brook NY 11794 (USA)
License: CC-BY-ND 4.0
@article{AIF_2018__68_1_101_0,
     author = {Brinkschulte, Judith and Hill, C. Denson},
     title = {Non locally trivializable $CR$ line bundles over compact {Lorentzian} $CR$ manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {101--108},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {68},
     number = {1},
     year = {2018},
     doi = {10.5802/aif.3152},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3152/}
}
TY  - JOUR
TI  - Non locally trivializable $CR$ line bundles over compact Lorentzian $CR$ manifolds
JO  - Annales de l'Institut Fourier
PY  - 2018
DA  - 2018///
SP  - 101
EP  - 108
VL  - 68
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3152/
UR  - https://doi.org/10.5802/aif.3152
DO  - 10.5802/aif.3152
LA  - en
ID  - AIF_2018__68_1_101_0
ER  - 
%0 Journal Article
%T Non locally trivializable $CR$ line bundles over compact Lorentzian $CR$ manifolds
%J Annales de l'Institut Fourier
%D 2018
%P 101-108
%V 68
%N 1
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.3152
%R 10.5802/aif.3152
%G en
%F AIF_2018__68_1_101_0
Brinkschulte, Judith; Hill, C. Denson. Non locally trivializable $CR$ line bundles over compact Lorentzian $CR$ manifolds. Annales de l'Institut Fourier, Volume 68 (2018) no. 1, pp. 101-108. doi : 10.5802/aif.3152. https://aif.centre-mersenne.org/articles/10.5802/aif.3152/

[1] Andreotti, Aldo; Fredricks, Gregory; Nacinovich, Mauro On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 8 (1981), pp. 365-404 | Zbl

[2] Brinkschulte, Judith; Hill, C. Denson Obstructions to finite dimensional cohomology of abstract Cauchy-Riemann complexes, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 15 (2016), pp. 343-354 | Zbl

[3] Brinkschulte, Judith; Hill, C. Denson; Nacinovich, Mauro On the nonvanishing of abstract Cauchy–Riemann cohomology groups, Math. Ann., Volume 363 (2016) no. 3-4, pp. 1701-1715 | DOI | Zbl

[4] Folland, Gerald B.; Kohn, Joseph J. The Neumann problem for the Cauchy-Riemann complex, Annals of Mathematics Studies, Volume 57, Princeton University Press, 1972, viii+146 pages | Zbl

[5] Hill, C. Denson Counterexamples to Newlander-Nirenberg up to the boundary, Several complex variables and complex geometry (Proceedings of Symposia in Pure Mathematics) Volume 52, American Mathematical Society, 1991, pp. 191-197 | Zbl

[6] Hill, C. Denson; Nacinovich, Mauro Pseudoconcave CR manifolds, Complex analysis and geometry (Lecture Notes in Pure and Applied Mathematics) Volume 173 (1996), pp. 275-297 | Zbl

[7] Hill, C. Denson; Nacinovich, Mauro A weak pseudoconcavity condition for abstract almost CR manifolds, Invent. Math., Volume 142 (2000) no. 2, pp. 251-283 | DOI | Zbl

[8] Webster, Sidney M. The integrability problem for CR vector bundles, Several complex variables and complex geometry (Proceedings of Symposia in Pure Mathematics) Volume 52, American Mathematical Society, 1991, pp. 355-368 | Zbl

Cited by Sources: