Nous montrons l’existence des solutions (orbites) absolument continues par morceaux pour le processus de rafle défini par un opérateur multivoque semi-algébrique (ou plus généralement, o-minimal). Nous établissons que de telles orbites bornées sont de longueur finie. Cette contribution, dans le cas particulier où le processus de rafle correspond aux sous-niveaux d’une fonction (non nécessairement régulière), généralise les résultats connus pour les orbites des systèmes dynamiques de type sous-gradient.
We show that any semi-algebraic sweeping process admits piecewise absolutely continuous solutions (trajectories), and any such bounded trajectory must have finite length. Analogous results hold more generally for sweeping processes definable in o-minimal structures. This extends previous work on (sub)gradient dynamical systems beyond monotone sweeping sets.
Révisé le :
Accepté le :
Publié le :
Keywords: Sweeping process, semialgebraic, o-minimal, desingularization, subgradient
Mot clés : Processus de rafle, semi-algébrique, o-minimal, désingularisation, sous-gradient.
Daniilidis, Aris 1 ; Drusvyatskiy, Dmitriy 2
@article{AIF_2017__67_5_2201_0, author = {Daniilidis, Aris and Drusvyatskiy, Dmitriy}, title = {Sweeping by a tame process}, journal = {Annales de l'Institut Fourier}, pages = {2201--2223}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {5}, year = {2017}, doi = {10.5802/aif.3133}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3133/} }
TY - JOUR AU - Daniilidis, Aris AU - Drusvyatskiy, Dmitriy TI - Sweeping by a tame process JO - Annales de l'Institut Fourier PY - 2017 SP - 2201 EP - 2223 VL - 67 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3133/ DO - 10.5802/aif.3133 LA - en ID - AIF_2017__67_5_2201_0 ER -
%0 Journal Article %A Daniilidis, Aris %A Drusvyatskiy, Dmitriy %T Sweeping by a tame process %J Annales de l'Institut Fourier %D 2017 %P 2201-2223 %V 67 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3133/ %R 10.5802/aif.3133 %G en %F AIF_2017__67_5_2201_0
Daniilidis, Aris; Drusvyatskiy, Dmitriy. Sweeping by a tame process. Annales de l'Institut Fourier, Tome 67 (2017) no. 5, pp. 2201-2223. doi : 10.5802/aif.3133. https://aif.centre-mersenne.org/articles/10.5802/aif.3133/
[1] Existence of solutions to the nonconvex sweeping process, J. Differ. Equations, Volume 164 (2000) no. 2, pp. 286-295 | DOI | Zbl
[2] The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems, SIAM J. Optim., Volume 17 (2007) no. 4, pp. 1205-1223 | DOI | Zbl
[3] Clarke subgradients of stratifiable functions, SIAM J. Optim., Volume 18 (2007) no. 2, pp. 556-572 | DOI | Zbl
[4] Characterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexity, Trans. Am. Math. Soc., Volume 362 (2010) no. 6, pp. 3319-3363 | DOI | Zbl
[5] Evolution problems associated with nonconvex closed moving sets with bounded variation, Port. Math., Volume 53 (1996) no. 1, pp. 73-87 | Zbl
[6] The sweeping processes without convexity, Set-Valued Var. Anal., Volume 7 (1999) no. 4, pp. 357-374 | DOI | Zbl
[7] Optimal control of the sweeping process, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms, Volume 19 (2012) no. 1-2, pp. 117-159 | Zbl
[8] Discrete approximations of a controlled sweeping process, Set-Valued Var. Anal., Volume 23 (2015) no. 1, pp. 69-86 | DOI | Zbl
[9] Sweeping by a continuous prox-regular set, J. Differ. Equations, Volume 187 (2003) no. 1, pp. 46-62 | DOI | Zbl
[10] Rectifiability of self-contracted curves in the Euclidean space and applications, J. Geom. Anal., Volume 25 (2015) no. 2, pp. 1211-1239 | DOI | Zbl
[11] Orbits of geometric descent, Can. Math. Bull., Volume 58 (2015) no. 1, pp. 44-50 | DOI | Zbl
[12] Asymptotic behaviour of self-contracted planar curves and gradient orbits of convex functions, J. Math. Pures Appl., Volume 94 (2010) no. 2, pp. 183-199 | DOI | Zbl
[13] Continuity and differentiability of set-valued maps revisited in the light of tame geometry, J. Lond. Math. Soc., Volume 83 (2011) no. 3, pp. 637-658 | DOI | Zbl
[14] Geometric categories and o-minimal structures, Duke Math. J., Volume 84 (1996) no. 2, pp. 497-540 | DOI | Zbl
[15] Semi-algebraic functions have small subdifferentials, Math. Program., Volume 140 (2013) no. 1, pp. 5-29 | DOI | Zbl
[16] BV solutions of nonconvex sweeping process differential inclusion with perturbation, J. Differ. Equations, Volume 226 (2006) no. 1, pp. 135-179 | DOI | Zbl
[17] On sweeping process with the cone of limiting normals, Set-Valued Var. Anal., Volume 21 (2013) no. 4, pp. 673-689 | DOI | Zbl
[18] Metric regularity and subdifferential calculus, Russ. Math. Surv., Volume 55 (2000) no. 3, pp. 501-558 | DOI | Zbl
[19] Critical values of set-valued maps with stratifiable graphs. Extensions of Sard and Smale-Sard theorems, Proc. Am. Math. Soc., Volume 136 (2008) no. 9, pp. 3111-3119 | DOI | Zbl
[20] An invitation to tame optimization, SIAM J. Optim., Volume 19 (2009) no. 4, pp. 1894-1917 | DOI | Zbl
[21] On parabolic quasi-variational inequalities and state-dependent sweeping processes, Topol. Methods Nonlinear Anal., Volume 12 (1998) no. 1, pp. 179-191 | DOI | Zbl
[22] Degenerate sweeping processes, Variations of domain and free-boundary problems in solid mechanics (Paris, 1997) (Solid Mech. Appl.), Volume 66, Kluwer Acad. Publ., 1999, pp. 301-307
[23] An introduction to Moreau’s sweeping process, Impacts in mechanical systems (Grenoble, 1999) (Lecture Notes in Physics), Volume 551, Springer, 2000, pp. 1-60 | Zbl
[24] On gradients of functions definable in o-minimal structures, Ann. Inst. Fourier, Volume 48 (1998) no. 3, pp. 769-783 | DOI | Zbl
[25] On steepest descent curves for quasi convex families in , Math. Nachr., Volume 288 (2015) no. 4, pp. 420-442 | DOI | Zbl
[26] Maximum length of steepest descent curves for quasi-convex functions, Geom. Dedicata, Volume 38 (1991) no. 2, pp. 211-227 | DOI | Zbl
[27] Variational analysis and generalized differentiation I & II, Grundlehren der Mathematischen Wissenschaften, 331/332, Springer, 2006, xxii+579/xxii+610 pages | Zbl
[28] Evolution problem associated with a moving convex set in a Hilbert space, J. Differ. Equations, Volume 26 (1977), pp. 347-374 | DOI | Zbl
[29] Variational analysis and optimal control of the sweeping process, Wayne State University (USA) (2011) (Ph. D. Thesis)
[30] Geometric theory of dynamical systems. An introduction, Springer, 1982, xii+198 pages | Zbl
[31] Variational analysis, Grundlehren der Mathematischen Wissenschaften, 317, Springer, 1998, xiii+733 pages | Zbl
[32] Sweeping process with regular and nonregular sets, J. Differ. Equations, Volume 193 (2003) no. 1, pp. 1-26 | DOI | Zbl
Cité par Sources :