We study congruences of lines defined by a sufficiently general choice of an alternating 3-form in dimensions, as Fano manifolds of index and dimension . These congruences include the -variety for and the variety of reductions of projected for .
We compute the degree of as the -th Fine number and study the Hilbert scheme of these congruences proving that the choice of bijectively corresponds to except when . The fundamental locus of the congruence is also studied together with its singular locus: these varieties include the Coble cubic for and the Peskine variety for .
The residual congruence of with respect to a general linear congruence containing is analysed in terms of the quadrics containing the linear span of . We prove that is Cohen–Macaulay but non-Gorenstein in codimension . We also examine the fundamental locus of of which we determine the singularities and the irreducible components.
Nous étudions des congruences de droites définies par une -forme alternée suffisamment générale en variables. Celles-ci sont des variétés de Fano d’indice et dimension . La classe de ces congruences contient la -variété homogène sous dans pour et la variété des réductions d’une projection générique de dans pour .
Nous montrons que le degré de est le -ième nombre de Fine. Nous étudions le schéma de Hilbert de ces congruences et montrons que le choix de correspond birationnellement au choix de sauf si .
Le lieu fondamental de ces congruences est étudié aussi bien que son lieu singulier : la classe de ces variétés inclut la cubique de Coble pour et la variété de Peskine pour .
La congruence résiduelle de par rapport à une congruence linéaire générique contenant est analysée à travers les quadriques qui contiennent l’espace linéaire engendré par . Nous montrons que est Cohen–Macaulay mais pas Gorenstein en codimension . Nous examinons le lieu fondamental de , duquel nous déterminons les singularités et les composantes irréductibles.
Revised:
Accepted:
Published online:
Keywords: Fano varieties; congruences of lines; trivectors; alternating 3-forms; Cohen–Macaulay varieties; linkage; linear congruences; Coble variety; Peskine variety; variety of reductions; secant lines; fundamental loci.
Mot clés : variétés de Fano ; congruences de droites ; trivecteurs ; 3-formes alternées ; variétés de Cohen-Macaulay ; liaison ; congruences linéaires ; variété de Coble ; variété de Peskine ; variétés de réduction ; droites sécantes ; lieu fondamental.
@article{AIF_2017__67_5_2099_0, author = {De Poi, Pietro and Faenzi, Daniele and Mezzetti, Emilia and Ranestad, Kristian}, title = {Fano congruences of index 3 and alternating 3-forms}, journal = {Annales de l'Institut Fourier}, pages = {2099--2165}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {5}, year = {2017}, doi = {10.5802/aif.3131}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3131/} }
TY - JOUR AU - De Poi, Pietro AU - Faenzi, Daniele AU - Mezzetti, Emilia AU - Ranestad, Kristian TI - Fano congruences of index 3 and alternating 3-forms JO - Annales de l'Institut Fourier PY - 2017 SP - 2099 EP - 2165 VL - 67 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3131/ DO - 10.5802/aif.3131 LA - en ID - AIF_2017__67_5_2099_0 ER -
%0 Journal Article %A De Poi, Pietro %A Faenzi, Daniele %A Mezzetti, Emilia %A Ranestad, Kristian %T Fano congruences of index 3 and alternating 3-forms %J Annales de l'Institut Fourier %D 2017 %P 2099-2165 %V 67 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3131/ %R 10.5802/aif.3131 %G en %F AIF_2017__67_5_2099_0
De Poi, Pietro; Faenzi, Daniele; Mezzetti, Emilia; Ranestad, Kristian. Fano congruences of index 3 and alternating 3-forms. Annales de l'Institut Fourier, Volume 67 (2017) no. 5, pp. 2099-2165. doi : 10.5802/aif.3131. https://aif.centre-mersenne.org/articles/10.5802/aif.3131/
[1] The Online Encyclopedia of Integer Sequences (https://oeis.org/A000108)
[2] Non-defectivity of Grassmannians of planes, J. Algebr. Geom., Volume 21 (2012) no. 1, pp. 1-20 | DOI | MR | Zbl
[3] Systems of conservation laws of Temple class, equations of associativity and linear congruences in , Manuscr. Math., Volume 106 (2001) no. 4, pp. 461-488 | DOI | MR | Zbl
[4] The gonality theorem of Noether for hypersurfaces, J. Algebr. Geom., Volume 23 (2014) no. 2, pp. 313-339 | DOI | MR | Zbl
[5] Measures of irrationality for hypersurfaces of large degree, Compos. Math., Volume 153 (2017), pp. 2368-2393 | DOI
[6] Varieties with one apparent double point, J. Algebr. Geom., Volume 13 (2004) no. 3, pp. 475-512 | DOI | MR | Zbl
[7] On the classification of OADP varieties, Sci. China Math., Volume 54 (2011) no. 8, pp. 1561-1575 | DOI | MR | Zbl
[8] On first order congruences of lines of with a fundamental curve, Manuscr. Math., Volume 106 (2001) no. 1, pp. 101-116 erratum ibid 127 (2008), no. 1, p. 137 | DOI | MR | Zbl
[9] Threefolds in with one apparent quadruple point, Commun. Algebra, Volume 31 (2003) no. 4, pp. 1927-1947 | DOI | MR | Zbl
[10] Linear congruences and hyperbolic systems of conservation laws, Projective varieties with unexpected properties, Walter de Gruyter, 2005, pp. 209-230 | MR | Zbl
[11] On congruences of linear spaces of order one, Rend. Ist. Mat. Univ. Trieste, Volume 39 (2007), pp. 177-206 | MR | Zbl
[12] Congruences of lines in , quadratic normality, and completely exceptional Monge-Ampère equations, Geom. Dedicata, Volume 131 (2008), pp. 213-230 | DOI | MR | Zbl
[13] Hyper-Kähler fourfolds and Grassmann geometry, J. Reine Angew. Math., Volume 649 (2010), pp. 63-87 | DOI | MR | Zbl
[14] A survey of the Fine numbers, Discrete Math., Volume 241 (2001) no. 1-3, pp. 241-265 (Selected papers in honor of Helge Tverberg) | DOI | MR | Zbl
[15] Closures of equivalence classes of trivectors of an eight-dimensional complex vector space, Can. Math. Bull., Volume 26 (1983) no. 1, pp. 92-100 | DOI | MR | Zbl
[16] Skew-symmetric matrices and Palatini scrolls, Math. Ann., Volume 347 (2010) no. 4, pp. 859-883 | DOI | MR | Zbl
[17] Representation theory, Graduate Texts in Mathematics, 129, Springer, 1991, xvi+551 pages (A first course, Readings in Mathematics) | DOI | MR | Zbl
[18] Alternating trilinear forms on a nine-dimensional space and degenerations of (3,3)-polarized Abelian surfaces, Proc. Lond. Math. Soc., Volume 110 (2015) no. 3, pp. 755-785 | DOI | MR | Zbl
[19] Moduli of abelian varieties, Vinberg -groups, and free resolutions, Commutative algebra, Springer, 2013, pp. 419-469 | DOI | MR | Zbl
[20] Classification of tri-vectors of rank , Dokl. Akad. Nauk. SSSR, Volume 2 (1935), pp. 353-355 | Zbl
[21] Foundations of the theory of algebraic invariants, P. Noordhoff Ltd., 1964 | Zbl
[22] Duality and quadratic normality, Rend. Ist. Mat. Univ. Trieste, Volume 47 (2015), pp. 9-16 | MR | Zbl
[23] On symmetric and skew-symmetric determinantal varieties, Topology, Volume 23 (1984) no. 1, pp. 71-84 | DOI | MR | Zbl
[24] Singularities of duals of Grassmannians, J. Algebra, Volume 337 (2011) no. 1, pp. 369-384 | DOI | MR | Zbl
[25] Severi varieties and their varieties of reductions, J. Reine Angew. Math., Volume 585 (2005), pp. 93-139 | DOI | MR | Zbl
[26] Vector bundles on Fano varieties of genus ten, Math. Ann., Volume 356 (2013) no. 2, pp. 439-467 | DOI | MR | Zbl
[27] The transversality of a general translate, Compos. Math., Volume 28 (1974), pp. 287-297 | MR | Zbl
[28] Introduction to liaison theory and deficiency modules, Progress in Mathematics, 165, Birkhäuser, 1998, xii+215 pages | DOI | MR | Zbl
[29] Biregular classification of Fano -folds and Fano manifolds of coindex , Proc. Natl. Acad. Sci. U.S.A., Volume 86 (1989) no. 9, pp. 3000-3002 | DOI | MR | Zbl
[30] Curves and Grassmannians, Algebraic geometry and related topics (Inchon, 1992) (Conference Proceedings and Lecture Notes in Algebraic Geometry), Volume 1, International Press, 1993, pp. 19-40 | MR | Zbl
[31] On Cayley bundles on the five-dimensional quadric, Boll. Unione Mat. Ital., Volume 4 (1990) no. 1, pp. 87-100 | MR | Zbl
[32] On -folds in which are scrolls, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 19 (1992) no. 3, pp. 451-471 | MR | Zbl
[33] On the microlocal structure of a regular prehomogeneous vector space associated with , Proc. Japan Acad., Volume 56 (1980) no. 1, pp. 18-21 http://projecteuclid.org/euclid.pja/1195517030 | DOI | MR | Zbl
[34] Order 1 congruences of lines with smooth fundamental scheme, Rend. Ist. Mat. Univ. Trieste, Volume 47 (2015), pp. 203-216 | MR | Zbl
[35] Klassifizierung der alternierenden Grössen dritten Grades in dimensionen, Rendiconti Palermo, Volume 55 (1931), pp. 137-156 | DOI | Zbl
[36] Sui complessi lineari di piani nello spazio a cinque dimensioni, Ann. Mat. Pura Appl., Volume 7 (1917), pp. 75-123 | Zbl
[37] Classification of trivectors of a -dimensional space, Sel. Math. Sov., Volume 7 (1978) no. 1, pp. 63-98 | MR | Zbl
[38] Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics, 149, Cambridge University Press, 2003, xiv+371 pages | DOI | MR | Zbl
Cited by Sources: