Fano congruences of index 3 and alternating 3-forms
Annales de l'Institut Fourier, Volume 67 (2017) no. 5, pp. 2099-2165.

We study congruences of lines X ω defined by a sufficiently general choice of an alternating 3-form ω in n+1 dimensions, as Fano manifolds of index 3 and dimension n-1. These congruences include the G 2 -variety for n=6 and the variety of reductions of projected 2 × 2 for n=7.

We compute the degree of X ω as the n-th Fine number and study the Hilbert scheme of these congruences proving that the choice of ω bijectively corresponds to X ω except when n=5. The fundamental locus of the congruence is also studied together with its singular locus: these varieties include the Coble cubic for n=8 and the Peskine variety for n=9.

The residual congruence Y of X ω with respect to a general linear congruence containing X ω is analysed in terms of the quadrics containing the linear span of X ω . We prove that Y is Cohen–Macaulay but non-Gorenstein in codimension 4. We also examine the fundamental locus G of Y of which we determine the singularities and the irreducible components.

Nous étudions des congruences de droites X ω définies par une 3-forme alternée suffisamment générale en n+1 variables. Celles-ci sont des variétés de Fano d’indice 3 et dimension n-1. La classe de ces congruences contient la 5-variété homogène sous G 2 dans 13 pour n=6 et la variété des réductions d’une projection générique de 2 × 2 dans 7 pour n=7.

Nous montrons que le degré de X ω est le n-ième nombre de Fine. Nous étudions le schéma de Hilbert de ces congruences et montrons que le choix de ω correspond birationnellement au choix de X ω sauf si n=5.

Le lieu fondamental de ces congruences est étudié aussi bien que son lieu singulier  : la classe de ces variétés inclut la cubique de Coble pour n=8 et la variété de Peskine pour n=9.

La congruence résiduelle Y de X ω par rapport à une congruence linéaire générique contenant X ω est analysée à travers les quadriques qui contiennent l’espace linéaire engendré par X ω . Nous montrons que Y est Cohen–Macaulay mais pas Gorenstein en codimension 4. Nous examinons le lieu fondamental G de Y, duquel nous déterminons les singularités et les composantes irréductibles.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3131
Classification: 14M15, 14J45, 14J60, 14M06, 14M05
Keywords: Fano varieties; congruences of lines; trivectors; alternating 3-forms; Cohen–Macaulay varieties; linkage; linear congruences; Coble variety; Peskine variety; variety of reductions; secant lines; fundamental loci.
Mot clés : variétés de Fano ; congruences de droites ; trivecteurs ; 3-formes alternées ; variétés de Cohen-Macaulay ; liaison ; congruences linéaires ; variété de Coble ; variété de Peskine ; variétés de réduction ; droites sécantes ; lieu fondamental.
De Poi, Pietro 1; Faenzi, Daniele 2; Mezzetti, Emilia 3; Ranestad, Kristian 4

1 Dipartimento di Scienze Matematiche, Informatiche e Fisiche Università degli Studi di Udine Via delle Scienze 206 Località Rizzi 33100 Udine (Italy)
2 Université de Bourgogne Institut de Mathématiques de Bourgogne UMR CNRS 5584 UFR Sciences et Techniques – Bâtiment Mirande – Bureau 310 9 Avenue Alain Savary BP 47870 21078 Dijon Cedex (France)
3 Dipartimento di Matematica e Geoscienze Sezione di Matematica e Informatica Università degli Studi di Trieste Via Valerio 12/1 34127 Trieste (Italy)
4 Department of Mathematics University of Oslo P.O. Box 1053 Blindern NO-0316 Oslo (Norway)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2017__67_5_2099_0,
     author = {De Poi, Pietro and Faenzi, Daniele and Mezzetti, Emilia and Ranestad, Kristian},
     title = {Fano congruences of index 3 and alternating 3-forms},
     journal = {Annales de l'Institut Fourier},
     pages = {2099--2165},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {67},
     number = {5},
     year = {2017},
     doi = {10.5802/aif.3131},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3131/}
}
TY  - JOUR
AU  - De Poi, Pietro
AU  - Faenzi, Daniele
AU  - Mezzetti, Emilia
AU  - Ranestad, Kristian
TI  - Fano congruences of index 3 and alternating 3-forms
JO  - Annales de l'Institut Fourier
PY  - 2017
SP  - 2099
EP  - 2165
VL  - 67
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3131/
DO  - 10.5802/aif.3131
LA  - en
ID  - AIF_2017__67_5_2099_0
ER  - 
%0 Journal Article
%A De Poi, Pietro
%A Faenzi, Daniele
%A Mezzetti, Emilia
%A Ranestad, Kristian
%T Fano congruences of index 3 and alternating 3-forms
%J Annales de l'Institut Fourier
%D 2017
%P 2099-2165
%V 67
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3131/
%R 10.5802/aif.3131
%G en
%F AIF_2017__67_5_2099_0
De Poi, Pietro; Faenzi, Daniele; Mezzetti, Emilia; Ranestad, Kristian. Fano congruences of index 3 and alternating 3-forms. Annales de l'Institut Fourier, Volume 67 (2017) no. 5, pp. 2099-2165. doi : 10.5802/aif.3131. https://aif.centre-mersenne.org/articles/10.5802/aif.3131/

[1] The Online Encyclopedia of Integer Sequences (https://oeis.org/A000108)

[2] Abo, Hirotachi; Ottaviani, Giorgio; Peterson, Chris Non-defectivity of Grassmannians of planes, J. Algebr. Geom., Volume 21 (2012) no. 1, pp. 1-20 | DOI | MR | Zbl

[3] Agafonov, Sergey I.; Ferapontov, Evgeny V. Systems of conservation laws of Temple class, equations of associativity and linear congruences in 4 , Manuscr. Math., Volume 106 (2001) no. 4, pp. 461-488 | DOI | MR | Zbl

[4] Bastianelli, Francesco; Cortini, Renza; De Poi, Pietro The gonality theorem of Noether for hypersurfaces, J. Algebr. Geom., Volume 23 (2014) no. 2, pp. 313-339 | DOI | MR | Zbl

[5] Bastianelli, Francesco; De Poi, Pietro; Ein, Lawrence; Lazarsfeld, Robert; Ullery, Brooke Measures of irrationality for hypersurfaces of large degree, Compos. Math., Volume 153 (2017), pp. 2368-2393 | DOI

[6] Ciliberto, Ciro; Mella, Massimiliano; Russo, Francesco Varieties with one apparent double point, J. Algebr. Geom., Volume 13 (2004) no. 3, pp. 475-512 | DOI | MR | Zbl

[7] Ciliberto, Ciro; Russo, Francesco On the classification of OADP varieties, Sci. China Math., Volume 54 (2011) no. 8, pp. 1561-1575 | DOI | MR | Zbl

[8] De Poi, Pietro On first order congruences of lines of 4 with a fundamental curve, Manuscr. Math., Volume 106 (2001) no. 1, pp. 101-116 erratum ibid 127 (2008), no. 1, p. 137 | DOI | MR | Zbl

[9] De Poi, Pietro Threefolds in 5 with one apparent quadruple point, Commun. Algebra, Volume 31 (2003) no. 4, pp. 1927-1947 | DOI | MR | Zbl

[10] De Poi, Pietro; Mezzetti, Emilia Linear congruences and hyperbolic systems of conservation laws, Projective varieties with unexpected properties, Walter de Gruyter, 2005, pp. 209-230 | MR | Zbl

[11] De Poi, Pietro; Mezzetti, Emilia On congruences of linear spaces of order one, Rend. Ist. Mat. Univ. Trieste, Volume 39 (2007), pp. 177-206 | MR | Zbl

[12] De Poi, Pietro; Mezzetti, Emilia Congruences of lines in 5 , quadratic normality, and completely exceptional Monge-Ampère equations, Geom. Dedicata, Volume 131 (2008), pp. 213-230 | DOI | MR | Zbl

[13] Debarre, Olivier; Voisin, Claire Hyper-Kähler fourfolds and Grassmann geometry, J. Reine Angew. Math., Volume 649 (2010), pp. 63-87 | DOI | MR | Zbl

[14] Deutsch, Emeric; Shapiro, Louis A survey of the Fine numbers, Discrete Math., Volume 241 (2001) no. 1-3, pp. 241-265 (Selected papers in honor of Helge Tverberg) | DOI | MR | Zbl

[15] Djoković, Dragomir Ž. Closures of equivalence classes of trivectors of an eight-dimensional complex vector space, Can. Math. Bull., Volume 26 (1983) no. 1, pp. 92-100 | DOI | MR | Zbl

[16] Faenzi, Daniele; Fania, Maria Lucia Skew-symmetric matrices and Palatini scrolls, Math. Ann., Volume 347 (2010) no. 4, pp. 859-883 | DOI | MR | Zbl

[17] Fulton, William; Harris, Joe Representation theory, Graduate Texts in Mathematics, 129, Springer, 1991, xvi+551 pages (A first course, Readings in Mathematics) | DOI | MR | Zbl

[18] Gruson, Laurent; Sam, Steven V. Alternating trilinear forms on a nine-dimensional space and degenerations of (3,3)-polarized Abelian surfaces, Proc. Lond. Math. Soc., Volume 110 (2015) no. 3, pp. 755-785 | DOI | MR | Zbl

[19] Gruson, Laurent; Sam, Steven V.; Weyman, Jerzy Moduli of abelian varieties, Vinberg θ-groups, and free resolutions, Commutative algebra, Springer, 2013, pp. 419-469 | DOI | MR | Zbl

[20] Gurevich, Grigorii B. Classification of tri-vectors of rank 8, Dokl. Akad. Nauk. SSSR, Volume 2 (1935), pp. 353-355 | Zbl

[21] Gurevich, Grigorii B. Foundations of the theory of algebraic invariants, P. Noordhoff Ltd., 1964 | Zbl

[22] Han, Frédéric Duality and quadratic normality, Rend. Ist. Mat. Univ. Trieste, Volume 47 (2015), pp. 9-16 | MR | Zbl

[23] Harris, Joe; Tu, Loring W. On symmetric and skew-symmetric determinantal varieties, Topology, Volume 23 (1984) no. 1, pp. 71-84 | DOI | MR | Zbl

[24] Holweck, Frédéric Singularities of duals of Grassmannians, J. Algebra, Volume 337 (2011) no. 1, pp. 369-384 | DOI | MR | Zbl

[25] Iliev, Atanas; Manivel, Laurent Severi varieties and their varieties of reductions, J. Reine Angew. Math., Volume 585 (2005), pp. 93-139 | DOI | MR | Zbl

[26] Kapustka, Michał; Ranestad, Kristian Vector bundles on Fano varieties of genus ten, Math. Ann., Volume 356 (2013) no. 2, pp. 439-467 | DOI | MR | Zbl

[27] Kleiman, Steven L. The transversality of a general translate, Compos. Math., Volume 28 (1974), pp. 287-297 | MR | Zbl

[28] Migliore, Juan C. Introduction to liaison theory and deficiency modules, Progress in Mathematics, 165, Birkhäuser, 1998, xii+215 pages | DOI | MR | Zbl

[29] Mukai, Shigeru Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Natl. Acad. Sci. U.S.A., Volume 86 (1989) no. 9, pp. 3000-3002 | DOI | MR | Zbl

[30] Mukai, Shigeru Curves and Grassmannians, Algebraic geometry and related topics (Inchon, 1992) (Conference Proceedings and Lecture Notes in Algebraic Geometry), Volume 1, International Press, 1993, pp. 19-40 | MR | Zbl

[31] Ottaviani, Giorgio On Cayley bundles on the five-dimensional quadric, Boll. Unione Mat. Ital., Volume 4 (1990) no. 1, pp. 87-100 | MR | Zbl

[32] Ottaviani, Giorgio On 3-folds in 5 which are scrolls, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 19 (1992) no. 3, pp. 451-471 | MR | Zbl

[33] Ozeki, Ikuzō On the microlocal structure of a regular prehomogeneous vector space associated with GL (8), Proc. Japan Acad., Volume 56 (1980) no. 1, pp. 18-21 http://projecteuclid.org/euclid.pja/1195517030 | DOI | MR | Zbl

[34] Peskine, Christian Order 1 congruences of lines with smooth fundamental scheme, Rend. Ist. Mat. Univ. Trieste, Volume 47 (2015), pp. 203-216 | MR | Zbl

[35] Schouten, Jan Arnoldus Klassifizierung der alternierenden Grössen dritten Grades in 7 dimensionen, Rendiconti Palermo, Volume 55 (1931), pp. 137-156 | DOI | Zbl

[36] Segre, Corrado Sui complessi lineari di piani nello spazio a cinque dimensioni, Ann. Mat. Pura Appl., Volume 7 (1917), pp. 75-123 | Zbl

[37] Vinberg, Èrnest B.; Èlašvili, Alexander G. Classification of trivectors of a 9-dimensional space, Sel. Math. Sov., Volume 7 (1978) no. 1, pp. 63-98 | MR | Zbl

[38] Weyman, Jerzy Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics, 149, Cambridge University Press, 2003, xiv+371 pages | DOI | MR | Zbl

Cited by Sources: