Nous étudions l’indice de stabilité canonique d’une variété projective lisse de type général avec un grand volume canonique ou un grand genre géométrique. Comme applications d’un théorème général d’extension établi dans la première partie, nous prouvons des résultats optimaux en dimensions 4 et 5 similaires à certains résultats bien connus sur les surfaces et les variétés de dimension 3.
We study the canonical stability index of nonsingular projective varieties of general type with either large canonical volume or large geometric genus. As applications of a general extension theorem established in the first part, we prove some optimal results in dimensions 4 and 5, which are parallel to some well-known results on surfaces and 3-folds.
Révisé le :
Accepté le :
Publié le :
Keywords: canonical volumes, pluricanonical systems, extension theorems
Mot clés : volumes canoniques, systèmes pluricanoniques, théorèmes d’extension
Chen, Meng 1 ; Jiang, Zhi 2
@article{AIF_2017__67_5_2043_0, author = {Chen, Meng and Jiang, Zhi}, title = {A reduction of canonical stability index of 4 and 5 dimensional projective varieties with large volume}, journal = {Annales de l'Institut Fourier}, pages = {2043--2082}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {5}, year = {2017}, doi = {10.5802/aif.3129}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3129/} }
TY - JOUR AU - Chen, Meng AU - Jiang, Zhi TI - A reduction of canonical stability index of 4 and 5 dimensional projective varieties with large volume JO - Annales de l'Institut Fourier PY - 2017 SP - 2043 EP - 2082 VL - 67 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3129/ DO - 10.5802/aif.3129 LA - en ID - AIF_2017__67_5_2043_0 ER -
%0 Journal Article %A Chen, Meng %A Jiang, Zhi %T A reduction of canonical stability index of 4 and 5 dimensional projective varieties with large volume %J Annales de l'Institut Fourier %D 2017 %P 2043-2082 %V 67 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3129/ %R 10.5802/aif.3129 %G en %F AIF_2017__67_5_2043_0
Chen, Meng; Jiang, Zhi. A reduction of canonical stability index of 4 and 5 dimensional projective varieties with large volume. Annales de l'Institut Fourier, Tome 67 (2017) no. 5, pp. 2043-2082. doi : 10.5802/aif.3129. https://aif.centre-mersenne.org/articles/10.5802/aif.3129/
[1] Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR | Zbl
[2] Canonical models of surfaces of general type, Publ. Math., Inst. Hautes Étud. Sci. (1972) no. 42, pp. 171-219 | MR | Zbl
[3] Four-dimensional projective orbifold hypersurfaces, Exp. Math., Volume 25 (2016) no. 2, pp. 176-193 | DOI | MR | Zbl
[4] Explicit birational geometry of 3-folds of general type, II, J. Differ. Geom., Volume 86 (2010) no. 2, pp. 237-271 http://projecteuclid.org/euclid.jdg/1299766788 | DOI | MR | Zbl
[5] Explicit birational geometry of 3-folds and 4-folds of general type, III, Compos. Math., Volume 151 (2015) no. 6, pp. 1041-1082 | DOI | MR | Zbl
[6] Canonical stability of 3-folds of general type with , Int. J. Math., Volume 14 (2003) no. 5, pp. 515-528 | DOI | MR | Zbl
[7] On pluricanonical systems of algebraic varieties of general type, Algebraic geometry in East Asia—Seoul 2008 (Advanced Studies in Pure Mathematics), Volume 60, Math. Soc. Japan, Tokyo, 2010, pp. 215-236 | MR | Zbl
[8] On an efficient induction step with Nklt – notes to Todorov, Commun. Anal. Geom., Volume 20 (2012) no. 4, pp. 765-779 | DOI | MR | Zbl
[9] Systèmes pluricanoniques sur les variétés de type général (d’après Hacon-McKernan, Takayama, Tsuji), Séminaire Bourbaki. Vol. 2006/2007 (Astérisque), Volume 317, Société Mathématique de France, 2008, pp. 119-140 (Exp. No. 970, vii) | MR | Zbl
[10] Pluricanonical systems for 3-folds and 4-folds of general type, Math. Proc. Camb. Philos. Soc., Volume 152 (2012) no. 1, pp. 9-34 | DOI | MR | Zbl
[11] Boundedness of pluricanonical maps of varieties of general type, Invent. Math., Volume 166 (2006) no. 1, pp. 1-25 | DOI | MR | Zbl
[12] On the birational automorphisms of varieties of general type, Ann. Math., Volume 177 (2013) no. 3, pp. 1077-1111 | DOI | MR | Zbl
[13] Working with weighted complete intersections, Explicit birational geometry of 3-folds (London Mathematical Society Lecture Note Series), Volume 281, Cambridge University Press., 2000, pp. 101-173 | MR | Zbl
[14] A generalization of Kodaira-Ramanujam’s vanishing theorem, Math. Ann., Volume 261 (1982) no. 1, pp. 43-46 | DOI | MR | Zbl
[15] On Fujita’s freeness conjecture for -folds and -folds, Math. Ann., Volume 308 (1997) no. 3, pp. 491-505 | DOI | MR | Zbl
[16] On the extension problem of pluricanonical forms, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), 193–207 (Contemporary Mathematics), Volume 241, American Mathematical Society, 1999, pp. 193-207 | Zbl
[17] On Noether’s inequality for threefolds, J. Math. Soc. Japan, Volume 44 (1992) no. 1, pp. 145-156 | DOI | MR | Zbl
[18] Positivity in algebraic geometry. I Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3., 48, Springer, 2004, xviii+387 pages | DOI | MR | Zbl
[19] Positivity in algebraic geometry. II Positivity for vector bundles, and multiplier ideals., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3., 49, Springer, 2004, xviii+385 pages (Positivity for vector bundles, and multiplier ideals) | DOI | MR | Zbl
[20] Boundedness of log terminal Fano pairs of bounded index (2002) (https://arxiv.org/abs/math/0205214)
[21] Vector bundles of rank and linear systems on algebraic surfaces, Ann. Math., Volume 127 (1988) no. 2, pp. 309-316 | DOI | MR | Zbl
[22] Invariance of plurigenera, Invent. Math., Volume 134 (1998) no. 3, pp. 661-673 | DOI | MR | Zbl
[23] Finite generation of canonical ring by analytic method, Sci. China, Ser. A, Volume 51 (2008) no. 4, pp. 481-502 | DOI | MR | Zbl
[24] Pluricanonical systems on algebraic varieties of general type, Invent. Math., Volume 165 (2006) no. 3, pp. 551-587 | DOI | MR | Zbl
[25] Pluricanonical maps for threefolds of general type, Ann. Inst. Fourier, Volume 57 (2007) no. 4, pp. 1315-1330 http://aif.cedram.org/item?id=AIF_2007__57_4_1315_0 | DOI | MR | Zbl
[26] Pluricanonical systems of projective varieties of general type. I, Osaka J. Math., Volume 43 (2006) no. 4, pp. 967-995 http://projecteuclid.org/euclid.ojm/1165850044 | MR | Zbl
[27] Vanishing theorems, J. Reine Angew. Math., Volume 335 (1982), pp. 1-8 | DOI | MR | Zbl
[28] The third and fourth pluricanonical maps of threefolds of general type, Math. Proc. Camb. Philos. Soc., Volume 157 (2014) no. 2, pp. 209-220 | DOI | MR | Zbl
Cité par Sources :