Nous nous intéressons à une procédure générale de construction d’arbres réels aléatoires par collages successifs de nouvelles branches. À chaque étape, la nouvelle branche est collée en un point uniformément sur l’arbre pré-existant. Notre objectif principal est de comprendre comment le comportement asymptotique de la suite des longueurs de branches influence certaines propriétés géométriques de l’arbre, telles que la compacité ou la dimension de Hausdorff. Nous montrons en particulier que lorsque la suite de longueurs de branches se comporte en , avec fixé, l’arbre limite est compact, de dimension de Hausdorff . A titre d’exemple, ceci englobe une construction bien connue de l’arbre brownien d’Aldous. Lorsque , l’arbre limite est plus fin et de dimension de Hausdorff 1. Dans ce cas, nous montrons que correspond à la dimension de l’ensemble des feuilles de l’arbre.
We study a general procedure that builds random -trees by gluing recursively a new branch on a uniform point of the pre-existing tree. The aim of this paper is to see how the asymptotic behavior of the sequence of lengths of branches influences some geometric properties of the limiting tree, such as compactness and Hausdorff dimension. In particular, when the sequence of lengths of branches behaves roughly like for some , we show that the limiting tree is a compact random tree of Hausdorff dimension . This encompasses the famous construction of the Brownian tree of Aldous. When , the limiting tree is thinner and its Hausdorff dimension is always 1. In that case, we show that corresponds to the dimension of the set of leaves of the tree.
Révisé le :
Accepté le :
Publié le :
Keywords: random trees, stick-breaking, Gromov–Hausdorff convergence, fractal dimension
Mot clés : arbres aléatoires, convergence au sens Gromov–Hausdorff, dimension fractale
Curien, Nicolas 1 ; Haas, Bénédicte 2
@article{AIF_2017__67_5_1963_0, author = {Curien, Nicolas and Haas, B\'en\'edicte}, title = {Random trees constructed by aggregation}, journal = {Annales de l'Institut Fourier}, pages = {1963--2001}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {5}, year = {2017}, doi = {10.5802/aif.3126}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3126/} }
TY - JOUR AU - Curien, Nicolas AU - Haas, Bénédicte TI - Random trees constructed by aggregation JO - Annales de l'Institut Fourier PY - 2017 SP - 1963 EP - 2001 VL - 67 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3126/ DO - 10.5802/aif.3126 LA - en ID - AIF_2017__67_5_1963_0 ER -
%0 Journal Article %A Curien, Nicolas %A Haas, Bénédicte %T Random trees constructed by aggregation %J Annales de l'Institut Fourier %D 2017 %P 1963-2001 %V 67 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3126/ %R 10.5802/aif.3126 %G en %F AIF_2017__67_5_1963_0
Curien, Nicolas; Haas, Bénédicte. Random trees constructed by aggregation. Annales de l'Institut Fourier, Tome 67 (2017) no. 5, pp. 1963-2001. doi : 10.5802/aif.3126. https://aif.centre-mersenne.org/articles/10.5802/aif.3126/
[1] The continuum random tree. I, Ann. Probab., Volume 19 (1991) no. 1, pp. 1-28 | DOI | MR | Zbl
[2] Explosion and linear transit times in infinite trees, Probab. Theory Relat. Fields, Volume 167 (2017) no. 1-2, pp. 325-347 | DOI | Zbl
[3] Diffusion-limited aggregation on a tree, Probab. Theory Relat. Fields, Volume 107 (1997) no. 1, pp. 1-60 | DOI | MR | Zbl
[4] Probability and real trees, Lecture Notes in Mathematics, 1920 (2008), xii+193 pages (Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, July 6–23, 2005) | DOI | MR | Zbl
[5] Fractal geometry. Mathematical foundations and applications, John Wiley & Sons, Inc., 2003, xxviii+337 pages | DOI | MR | Zbl
[6] A line-breaking construction of the stable trees, Elect. J. Probab., Volume 20 (2015) no. 16, pp. 1-24 | Zbl
[7] Asymptotics of heights in random trees constructed by aggregation, Electron. J. Probab., Volume 22 (2017) (Paper No. 21, 25 p.) | DOI | Zbl
[8] On metric properties of tree-like spaces, Contributions to graph theory and its applications (Internat. Colloq., Oberhof, 1977) (German) (1977), pp. 129-156 | MR | Zbl
[9] Random real trees, Ann. Fac. Sci. Toulouse, Volume 15 (2006) no. 1, pp. 35-62 | DOI | MR | Zbl
[10] A time-dependent version of Pólya’s urn, J. Theor. Probab., Volume 3 (1990) no. 4, pp. 627-637 | DOI | MR | Zbl
[11] Conformally invariant scaling limits: an overview and a collection of problems, Proceedings of the international congress of mathematicians (ICM), Madrid (2006) (2007), pp. 513-543 | Zbl
[12] Random gluing of –dimensional metric spaces (2017) (https://arxiv.org/abs/1707.09833)
Cité par Sources :