Gaps in sumsets of s pseudo s-th powers
Annales de l'Institut Fourier, Volume 67 (2017) no. 4, pp. 1725-1738.

We study the length of the gaps between consecutive members in the sumset sA when A is a pseudo s-th power sequence, with s2. We show that, almost surely, limsup(b n+1 -b n )/logb n =s s s!/Γ s (1/s), where b n are the elements of sA.

On étudie la taille des différences entre les termes consécutifs de la suite sAA est une suite de pseudo-puissances s-ièmes avec s2. On montre qu’on a presque sûrement limsup(b n+1 -b n )/logb n =s s s!/Γ s (1/s), où les b n sont les éléments de la suite sA.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3120
Classification: 11B83
Keywords: Additive Number Theory, Pseudo $s$-th powers, Probabilistic method
Mot clés : Théorie additive des nombres, pseudo puissances $s$-ièmes, méthode probabiliste
Cilleruelo, Javier 1; Deshouillers, Jean-Marc 2

1 Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de Matemáticas Universidad Autónoma de Madrid 28049, Madrid (Spain)
2 Bordeaux INP, CNRS Institut Mathématique de Bordeaux, UMR 5251 33405 Talence (France)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2017__67_4_1725_0,
     author = {Cilleruelo, Javier and Deshouillers, Jean-Marc},
     title = {Gaps in sumsets of $s$ pseudo $s$-th powers},
     journal = {Annales de l'Institut Fourier},
     pages = {1725--1738},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {67},
     number = {4},
     year = {2017},
     doi = {10.5802/aif.3120},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3120/}
}
TY  - JOUR
AU  - Cilleruelo, Javier
AU  - Deshouillers, Jean-Marc
TI  - Gaps in sumsets of $s$ pseudo $s$-th powers
JO  - Annales de l'Institut Fourier
PY  - 2017
SP  - 1725
EP  - 1738
VL  - 67
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3120/
DO  - 10.5802/aif.3120
LA  - en
ID  - AIF_2017__67_4_1725_0
ER  - 
%0 Journal Article
%A Cilleruelo, Javier
%A Deshouillers, Jean-Marc
%T Gaps in sumsets of $s$ pseudo $s$-th powers
%J Annales de l'Institut Fourier
%D 2017
%P 1725-1738
%V 67
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3120/
%R 10.5802/aif.3120
%G en
%F AIF_2017__67_4_1725_0
Cilleruelo, Javier; Deshouillers, Jean-Marc. Gaps in sumsets of $s$ pseudo $s$-th powers. Annales de l'Institut Fourier, Volume 67 (2017) no. 4, pp. 1725-1738. doi : 10.5802/aif.3120. https://aif.centre-mersenne.org/articles/10.5802/aif.3120/

[1] Boppona, Ravi; Spencer, Joel A useful elementary correlation inequality, J. Comb. Theory, Volume 50 (1989) no. 2, pp. 305-307 | DOI

[2] Erdős, Pál; Rényi, Alfréd On Cantor’s series with convergent 1/q n , Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., Volume 2 (1959), pp. 93-109

[3] Erdős, Pál; Rényi, Alfréd Additive properties of random sequences of positive integers, Acta Arith., Volume 6 (1960), pp. 83-110 | DOI

[4] Goguel, Johann Heinrich Über Summen von zufälligen Folgen natürlischer Zahlen, J. Reine Angew. Math., Volume 278/279 (1975), pp. 63-77

[5] Landreau, Bernard Étude probabiliste des sommes des puissances s-ièmes, Compositio Mathematica, Volume 99 (1995) no. 1, pp. 1-31

Cited by Sources: