On construit une famille d’opérateurs bi-différentiels de dans qui sont covariants pour l’action projective du groupe sur . Dans le cas , cette construction fournit une nouvelle approche des transvectants et des crochets de Rankin–Cohen.
A family of bi-differential operators from into which are covariant for the projective action of the group on is constructed, generalizing both the transvectants and the Rankin–Cohen brackets (case ).
Révisé le :
Accepté le :
Publié le :
Keywords: Covariant differential operators, Knapp–Stein intertwining operators, Zeta functional equation, transvectants, Rankin–Cohen brackets
Mot clés : Opérateurs différentiels covariants, opérateurs d’entrelacement de Knapp–Stein, équation fonctionnelle de Zeta, transvectants, crochets de Rankin–Cohen
Clerc, Jean-Louis 1
@article{AIF_2017__67_4_1427_0, author = {Clerc, Jean-Louis}, title = {Covariant bi-differential operators on matrix space}, journal = {Annales de l'Institut Fourier}, pages = {1427--1455}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {4}, year = {2017}, doi = {10.5802/aif.3114}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3114/} }
TY - JOUR AU - Clerc, Jean-Louis TI - Covariant bi-differential operators on matrix space JO - Annales de l'Institut Fourier PY - 2017 SP - 1427 EP - 1455 VL - 67 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3114/ DO - 10.5802/aif.3114 LA - en ID - AIF_2017__67_4_1427_0 ER -
%0 Journal Article %A Clerc, Jean-Louis %T Covariant bi-differential operators on matrix space %J Annales de l'Institut Fourier %D 2017 %P 1427-1455 %V 67 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3114/ %R 10.5802/aif.3114 %G en %F AIF_2017__67_4_1427_0
Clerc, Jean-Louis. Covariant bi-differential operators on matrix space. Annales de l'Institut Fourier, Tome 67 (2017) no. 4, pp. 1427-1455. doi : 10.5802/aif.3114. https://aif.centre-mersenne.org/articles/10.5802/aif.3114/
[1] Positivity of zeta distributions and small unitary representations, The ubiquitous heat kernel (Contemporary Mathematics), Volume 398, American Mathematical Society, 2006, pp. 1-46
[2] Singular invariant trilinear forms and covariant (bi)-differential operators under the conformal group, J. Funct. Anal., Volume 262 (2012) no. 10, pp. 4341-4376 | DOI
[3] The functional equation of zeta distributions associated with non-Euclidean Jordan algebras., Can. J. Math., Volume 58 (2006) no. 1, pp. 3-22 | DOI
[4] Local zeta functions attached to the minimal spherical series for a class of symmetric spaces, Mem. Am. Math. Soc., 821, American Mathematical Society, 2005, 233 pages
[5] Singular conformally invariant trilinear forms. II: The higher multiplicity cases (to appear in Transform. Groups)
[6] Ring structures for holomorphic discrete series and Rankin-Cohen brackets, J. Lie Theory, Volume 17 (2007) no. 2, pp. 283-305
[7] The Lie theory of the Rankin-Cohen brackets and allied bi-differential operators, Adv. Math., Volume 207 (2006) no. 2, pp. 484-531 | DOI
[8] Analysis on symmetric cones, Oxford Mathematical Publications, Clarendon Press, 1994, xii+382 pages
[9] Fourier analysis on matrix space, Mem. Am. Math. Soc., 108, American Mathematical Society, 1971, 77 pages
[10] Holonomic systems of Gegenbauer polynomials of matrix arguments related with Siegel modular forms, J. Math. Soc. Japan, Volume 64 (2012) no. 1, pp. 273-316 | DOI
[11] Representation theory of semisimple groups, an overview based on examples, Princeton Mathematical Series, 36, Princeton University Press, 1986, xvii+773 pages
[12] Vector-valued covariant differential operators for the Möbius transformation, Lie theory and its applications in physics (Springer Proceedings in Mathematics & Statistics), Volume 111, Springer, 2014, pp. 67-85
[13] Differential symmetry breaking operators. II: Rankin-Cohen operators for symmetric pairs, Sel. Math., Volume 22 (2016) no. 2, pp. 847-911 | DOI
[14] Décomposition orbitale des espaces préhomogènes réguliers de type parabolique commutatif et application, C. R. Acad. Sci., Paris, Volume 303 (1986), pp. 495-498
[15] Classical Invariant Theory, London Mathematical Society Student Texts, 44, Cambridge University Press, 1999, xxi+280 pages
[16] Generalized Transvectants and Siegel modular forms, Adv. Appl. Math., Volume 38 (2007) no. 3, pp. 404-418 | DOI
[17] Tensor products of holomorphic representations and bilinear differential operators, J. Funct. Anal., Volume 210 (2004) no. 1, pp. 171-192 | DOI
[18] On zeta functions associated with prehomogeneous vector spaces, Ann. Math., Volume 100 (1974), pp. 131-170 | DOI
[19] Analysis in matrix spaces and some new representations of , Ann. Math., Volume 86 (1967), pp. 461-490 | DOI
[20] Fourier analysis in number fields and Hecke’s zeta-functions, Princeton University, USA (1950) (Ph. D. Thesis)
[21] Algebras of symbols and modular forms, J. Anal. Math., Volume 68 (1996), pp. 121-143 | DOI
[22] Modular forms and differential operators, Proc. Indian Acad. Sci., Volume 104 (1994) no. 1, pp. 57-75
[23] Rankin-Cohen brackets, transvectants and covariant differential operators, Math. Z., Volume 264 (2010) no. 3, pp. 513-519 | DOI
Cité par Sources :