Locally conformally Berwald manifolds and compact quotients of reducible manifolds by homotheties
Annales de l'Institut Fourier, Volume 67 (2017) no. 2, pp. 843-862.

We study locally conformally Berwald metrics on closed manifolds which are not globally conformally Berwald. We prove that the characterization of such metrics is equivalent to characterizing incomplete, simply-connected, Riemannian manifolds with reducible holonomy group whose quotient by a group of homotheties is closed. We further prove a de Rham type splitting theorem which states that if such a manifold is analytic, it is isometric to the Riemannian product of a Euclidean space and an incomplete manifold.

Nous étudions des métriques qui sont localement, mais pas globalement conformément Berwaldiennes. Nous démontrons que la caractérisation de telles métriques est équivalente à la caractérisation des variétés Riemanniennes incomplètes et simplement connexes qui ont un groupe d’holonomie réductible tel que le quotient par un groupe d’homothéthies est fermé. De plus, nous démontrons un théorème de décomposition du type de Rham disant que si une telle variété est analytique, elle est isométrique à un produit Riemannien d’un espace Euclidien et d’une variété incomplète.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3097
Classification: 53C60, 53C22, 53B40, 53C29
Keywords: Finsler manifold, Berwald manifold, homothety group, reducible holonomy
Mot clés : Variété finslerienne, variété Berwaldienne, groupe d’homothéthies, holonomie réductible

Matveev, Vladimir S. 1; Nikolayevsky, Yuri 2

1 Institute of Mathematics Friedrich-Schiller-Universität Jena 07737 Jena (Germany)
2 Department of Mathematics and Statistics La Trobe University Melbourne, Victoria, 3086 (Australia)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2017__67_2_843_0,
     author = {Matveev, Vladimir S. and Nikolayevsky, Yuri},
     title = {Locally conformally {Berwald} manifolds and compact quotients of reducible manifolds by homotheties},
     journal = {Annales de l'Institut Fourier},
     pages = {843--862},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {67},
     number = {2},
     year = {2017},
     doi = {10.5802/aif.3097},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3097/}
}
TY  - JOUR
AU  - Matveev, Vladimir S.
AU  - Nikolayevsky, Yuri
TI  - Locally conformally Berwald manifolds and compact quotients of reducible manifolds by homotheties
JO  - Annales de l'Institut Fourier
PY  - 2017
SP  - 843
EP  - 862
VL  - 67
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3097/
DO  - 10.5802/aif.3097
LA  - en
ID  - AIF_2017__67_2_843_0
ER  - 
%0 Journal Article
%A Matveev, Vladimir S.
%A Nikolayevsky, Yuri
%T Locally conformally Berwald manifolds and compact quotients of reducible manifolds by homotheties
%J Annales de l'Institut Fourier
%D 2017
%P 843-862
%V 67
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3097/
%R 10.5802/aif.3097
%G en
%F AIF_2017__67_2_843_0
Matveev, Vladimir S.; Nikolayevsky, Yuri. Locally conformally Berwald manifolds and compact quotients of reducible manifolds by homotheties. Annales de l'Institut Fourier, Volume 67 (2017) no. 2, pp. 843-862. doi : 10.5802/aif.3097. https://aif.centre-mersenne.org/articles/10.5802/aif.3097/

[1] Belgun, Florin; Moroianu, Andrei On the irreducibility of locally metric connections, J. Reine Angew. Math., Volume 714 (2016), pp. 123-150 | DOI

[2] Berger, Marcel Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France, Volume 83 (1955), pp. 279-330 | DOI

[3] Centore, Paul Volume forms in Finsler spaces, Houston J. Math., Volume 25 (1999) no. 4, pp. 625-640

[4] Fried, David Closed similarity manifolds, Comment. Math. Helv., Volume 55 (1980) no. 4, pp. 576-582 | DOI

[5] Kourganoff, Mickaël Similarity structures and de Rham decomposition (2016) (http://arxiv.org/abs/1507.05573v2)

[6] Matveev, Vladimir S.; Nikolayevsky, Yuri A counterexample to Belgun-Moroianu conjecture, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 5, pp. 455-457 | DOI

[7] Matveev, Vladimir S.; Troyanov, Marc The Binet-Legendre metric in Finsler geometry, Geom. Topol., Volume 16 (2012) no. 4, pp. 2135-2170 | DOI

[8] Planche, Pierre Géométrie de Finsler sur les espaces symétriques, Université de Genève, Switzerland (1995) (Ph. D. Thesis)

[9] Planche, Pierre Structures de Finsler invariantes sur les espaces symétriques, C. R. Acad. Sci. Paris Sér. I Math., Volume 321 (1995) no. 11, pp. 1455-1458

[10] Ponge, Ralf; Reckziegel, Helmut Twisted products in pseudo-Riemannian geometry, Geom. Dedicata, Volume 48 (1993) no. 1, pp. 15-25 | DOI

[11] Simons, James On the transitivity of holonomy systems, Ann. Math., Volume 76 (1962), pp. 213-234 | DOI

[12] Szabó, Zoltán I. Positive definite Berwald spaces. Structure theorems on Berwald spaces, Tensor, Volume 35 (1981) no. 1, pp. 25-39

[13] Vincze, Csaba A new proof of Szabó’s theorem on the Riemann-metrizability of Berwald manifolds, Acta Math. Acad. Paedagog. Nyházi., Volume 21 (2005) no. 2, p. 199-204 (electronic)

[14] Vincze, Csaba On a scale function for testing the conformality of a Finsler manifold to a Berwald manifold, J. Geom. Phys., Volume 54 (2005) no. 4, pp. 454-475 | DOI

[15] Vincze, Csaba On geometric vector fields of Minkowski spaces and their applications, Differential Geom. Appl., Volume 24 (2006) no. 1, pp. 1-20 | DOI

Cited by Sources: