The purpose of this paper is to set up a formalism inspired by non-Archimedean geometry to study K-stability. We first provide a detailed analysis of Duistermaat–Heckman measures in the context of test configurations for arbitrary polarized schemes, characterizing in particular almost trivial test configurations. Second, for any normal polarized variety (or, more generally, polarized pair in the sense of the Minimal Model Program), we introduce and study non-Archimedean analogues of certain classical functionals in Kähler geometry. These functionals are defined on the space of test configurations, and the Donaldson–Futaki invariant is in particular interpreted as the non-Archimedean version of the Mabuchi functional, up to an explicit error term. Finally, we study in detail the relation between uniform K-stability and singularities of pairs, reproving and strengthening Y. Odaka’s results in our formalism. This provides various examples of uniformly K-stable varieties.
Le but de cet article est de mettre en place un formalisme inspiré par la géométrie non-archimédienne pour étudier la K-stabilité. Nous fournissons d’abord une analyse détaillée des mesures de Duistermaat–Heckman dans le contexte des configurations test de schémas polarisés arbitraires, caractérisant en particulier les configurations test presque triviales. Nous introduisons et étudions ensuite, pour toute variété normale polarisée (ou, plus généralement, toute paire polarisée au sens du Programme du Modèle Minimal), les analogues non-archimédiens de certaines fonctionnelles classiques de la géométrie kählérienne. Ces fonctionnelles sont définies sur l’espace des configurations test, et l’invariant de Donaldson–Futaki est en particulier interprété comme la version non-archimédienne de la fonctionnelle de Mabuchi, à un terme d’erreur explicite près. Enfin, nous étudions en détail les liens entre K-stabilité uniforme et singularités des paires, redémontrant et améliorant des résultats de Y. Odaka dans notre formalisme. Ceci fournit divers exemples de variétés uniformément K-stables.
Revised:
Accepted:
Published online:
Keywords: K-stability, Duistermaat–Heckman measures, singularities of pairs.
Mot clés : K-stabilité, mesures de Duistermaat–Heckman, singularités de paires.
@article{AIF_2017__67_2_743_0, author = {Boucksom, S\'ebastien and Hisamoto, Tomoyuki and Jonsson, Mattias}, title = {Uniform {K-stability,} {Duistermaat{\textendash}Heckman} measures and singularities of pairs}, journal = {Annales de l'Institut Fourier}, pages = {743--841}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {2}, year = {2017}, doi = {10.5802/aif.3096}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3096/} }
TY - JOUR AU - Boucksom, Sébastien AU - Hisamoto, Tomoyuki AU - Jonsson, Mattias TI - Uniform K-stability, Duistermaat–Heckman measures and singularities of pairs JO - Annales de l'Institut Fourier PY - 2017 SP - 743 EP - 841 VL - 67 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3096/ DO - 10.5802/aif.3096 LA - en ID - AIF_2017__67_2_743_0 ER -
%0 Journal Article %A Boucksom, Sébastien %A Hisamoto, Tomoyuki %A Jonsson, Mattias %T Uniform K-stability, Duistermaat–Heckman measures and singularities of pairs %J Annales de l'Institut Fourier %D 2017 %P 743-841 %V 67 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3096/ %R 10.5802/aif.3096 %G en %F AIF_2017__67_2_743_0
Boucksom, Sébastien; Hisamoto, Tomoyuki; Jonsson, Mattias. Uniform K-stability, Duistermaat–Heckman measures and singularities of pairs. Annales de l'Institut Fourier, Volume 67 (2017) no. 2, pp. 743-841. doi : 10.5802/aif.3096. https://aif.centre-mersenne.org/articles/10.5802/aif.3096/
[1] Singularities and -semistability, Int. Math. Res. Not. IMRN (2012) no. 4, pp. 849-869 | DOI
[2] Blowing up and desingularizing constant scalar curvature Kähler manifolds, Acta Math., Volume 196 (2006) no. 2, pp. 179-228 | DOI
[3] Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, 33, American Mathematical Society, Providence, RI, 1990, x+169 pages
[4] K-polystability of -Fano varieties admitting Kähler-Einstein metrics, Invent. Math., Volume 203 (2016) no. 3, pp. 973-1025 | DOI
[5] Convexity of the K-energy on the space of Kahler metrics and uniqueness of extremal metrics (2014) (https://arxiv.org/abs/1405.0401)
[6] Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties (2011) (https://arxiv.org/abs/1111.7158)
[7] A variational approach to the Yau-Tian-Donaldson conjecture (2015) (https://arxiv.org/abs/1509.04561)
[8] Complex optimal transport and the pluripotential theory of Kähler-Ricci solitons (2014) (https://arxiv.org/abs/1401.8264)
[9] Probability measures related to geodesics in the space of Kähler metrics (2009) (https://arxiv.org/abs/0907.1806)
[10] Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI
[11] Okounkov bodies of filtered linear series, Compos. Math., Volume 147 (2011) no. 4, pp. 1205-1229 | DOI
[12] The non-Archimedean Monge-Ampere equation, Nonarchimedean and Tropical Geometry (Simons Symposia), Springer, 2015, pp. 31-49
[13] Solution to a non-Archimedean Monge-Ampère equation, J. Amer. Math. Soc., Volume 28 (2015) no. 3, pp. 617-667 | DOI
[14] Singular semipositive metrics in non-Archimedean geometry, J. Algebraic Geom., Volume 25 (2016) no. 1, pp. 77-139 | DOI
[15] The volume of an isolated singularity, Duke Math. J., Volume 161 (2012) no. 8, pp. 1455-1520 | DOI
[16] Uniform K-stability and asymptotics of energy functionals in Kähler geometry (2016) (https://arxiv.org/abs/1603.01026)
[17] Singular semipositive metrics on line bundles on varieties over trivially valued fields (In preparation)
[18] Vanishing sequences and Okounkov bodies, Math. Ann., Volume 361 (2015) no. 3-4, pp. 811-834 | DOI
[19] Action d’un tore dans une variété projective, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) (Progr. Math.), Volume 92, Birkhäuser Boston, Boston, MA, 1990, pp. 509-539 | DOI
[20] On the lower bound of the Mabuchi energy and its application, Internat. Math. Res. Notices (2000) no. 12, pp. 607-623 | DOI
[21] Kähler-Einstein metrics on Fano manifolds, J. Amer. Math. Soc., Volume 28 (2015) no. 1, p. 183-197, 199–234, 235–278 | DOI
[22] The Mabuchi geometry of finite energy classes, Adv. Math., Volume 285 (2015), pp. 182-219 | DOI
[23] Tian’s properness conjectures and Finsler geometry of the space of Kahler metrics (2015) (https://arxiv.org/abs/1506.07129)
[24] Alpha invariants and coercivity of the Mabuchi functional on Fano manifolds, Ann. Fac. Sci. Toulouse, Volume 25 (2016) no. 4, pp. 919-934 | DOI
[25] Uniform stability of twisted constant scalar curvature Kähler metrics, Int. Math. Res. Not. IMRN, Volume 15 (2016), pp. 4728-4783 | DOI
[26] Remarks on the existence problem of positive Kähler-Einstein metrics, Math. Ann., Volume 282 (1988) no. 3, pp. 463-471 | DOI
[27] Scalar curvature and projective embeddings. I, J. Differ. Geom., Volume 59 (2001) no. 3, pp. 479-522 http://projecteuclid.org/euclid.jdg/1090349449 | DOI
[28] Scalar curvature and stability of toric varieties, J. Differ. Geom., Volume 62 (2002) no. 2, pp. 289-349 http://projecteuclid.org/euclid.jdg/1090950195 | DOI
[29] Lower bounds on the Calabi functional, J. Differ. Geom., Volume 70 (2005) no. 3, pp. 453-472 http://projecteuclid.org/euclid.jdg/1143642909 | DOI
[30] Kähler metrics with cone singularities along a divisor, Essays in mathematics and its applications, Springer, Heidelberg, 2012, pp. 49-79 | DOI
[31] On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math., Volume 69 (1982) no. 2, pp. 259-268 | DOI
[32] Characteristic classes in the Chow ring, J. Algebraic Geom., Volume 6 (1997) no. 3, pp. 431-443
[33] Equivariant intersection theory, Invent. Math., Volume 131 (1998) no. 3, pp. 595-634 | DOI
[34] Riemann-Roch for equivariant Chow groups, Duke Math. J., Volume 102 (2000) no. 3, pp. 567-594 | DOI
[35] Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble), Volume 56 (2006) no. 6, pp. 1701-1734 http://aif.cedram.org/item?id=AIF_2006__56_6_1701_0 | DOI
[36] Uniform approximation of Abhyankar valuation ideals in smooth function fields, Amer. J. Math., Volume 125 (2003) no. 2, pp. 409-440 http://muse.jhu.edu/journals/american_journal_of_mathematics/v125/125.2ein.pdf | DOI
[37] Die Sätze von Bertini für lokale Ringe, Math. Ann., Volume 229 (1977) no. 2, pp. 97-111 | DOI
[38] On K-stability and the volume functions of -Fano varieties (2015) (https://arxiv.org/abs/1508.04052)
[39] Optimal bounds for the volumes of Kähler-Einstein Fano manifolds (2015) (https://arxiv.org/abs/1508.04578)
[40] A valuative criterion for uniform K-stability of -Fano varieties (2016) (https://arxiv.org/abs/1602.00901)
[41] On the K-stability of Fano varieties and anticanonical divisors (2016) (https://arxiv.org/abs/1602.01305)
[42] Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 2, Springer-Verlag, Berlin, 1998, xiv+470 pages | DOI
[43] Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, 156, Springer-Verlag, Berlin-New York, 1970, xiv+256 pages (Notes written in collaboration with C. Musili)
[44] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York-Heidelberg, 1977, xvi+496 pages
[45] On the limit of spectral measures associated to a test configuration of a polarized Kähler manifold, J. Reine Angew. Math., Volume 713 (2016), pp. 129-148 | DOI
[46] Discrete valuations centered on local domains, J. Pure Appl. Algebra, Volume 161 (2001) no. 1-2, pp. 145-166 | DOI
[47] Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, 336, Cambridge University Press, Cambridge, 2006, xiv+431 pages
[48] Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble), Volume 62 (2012) no. 6, p. 2145-2209 (2013) | DOI
[49] Convex bodies associated to actions of reductive groups, Mosc. Math. J., Volume 12 (2012) no. 2, p. 369-396, 461
[50] Toward a numerical theory of ampleness, Ann. Math., Volume 84 (1966), pp. 293-344 | DOI
[51] Abhyankar places admit local uniformization in any characteristic, Ann. Sci. Éc. Norm. Sup., Volume 38 (2005) no. 6, pp. 833-846 | DOI
[52] Singularities of the minimal model program, Cambridge Tracts in Mathematics, 200, Cambridge University Press, Cambridge, 2013, x+370 pages (With a collaboration of Sándor Kovács) | DOI
[53] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998, viii+254 pages (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | DOI
[54] Positivity in algebraic geometry. II. Positivity for vector bundles, and multiplier ideals., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 49, Springer-Verlag, Berlin, 2004, xviii+385 pages
[55] Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér., Volume 42 (2009) no. 5, pp. 783-835 | DOI
[56] K-semistability is equivariant volume minimization (2015) (https://arxiv.org/abs/1512.07205)
[57] Minimizing normalized volumes of valuations (2015) (https://arxiv.org/abs/1511.08164)
[58] Conical Kähler-Einstein metrics revisited, Comm. Math. Phys., Volume 331 (2014) no. 3, pp. 927-973 | DOI
[59] Special test configuration and K-stability of Fano varieties, Ann. Math., Volume 180 (2014) no. 1, pp. 197-232 | DOI
[60] The volume of singular Kähler-Einstein Fano varieties (2016) (https://arxiv.org/abs/1605.01034)
[61] The Calabi conjecture and K-stability, Int. Math. Res. Not. IMRN (2012) no. 10, pp. 2272-2288 | DOI
[62] A generalization of the Ross-Thomas slope theory, Osaka J. Math., Volume 50 (2013) no. 1, pp. 171-185 http://projecteuclid.org/euclid.ojm/1364390425
[63] The GIT stability of polarized varieties via discrepancy, Ann. Math., Volume 177 (2013) no. 2, pp. 645-661 | DOI
[64] On parametrization, optimization and triviality of test configurations, Proc. Amer. Math. Soc., Volume 143 (2015) no. 1, pp. 25-33 | DOI
[65] Alpha invariant and K-stability of -Fano varieties, Adv. Math., Volume 229 (2012) no. 5, pp. 2818-2834 | DOI
[66] Testing log K-stability by blowing up formalism, Ann. Fac. Sci. Toulouse, Volume 24 (2015) no. 3, pp. 505-522 | DOI
[67] Log-canonical models of singular pairs and its applications, Math. Res. Lett., Volume 19 (2012) no. 2, pp. 325-334 | DOI
[68] Brunn-Minkowski inequality for multiplicities, Invent. Math., Volume 125 (1996) no. 3, pp. 405-411 | DOI
[69] CM Stability and the Generalized Futaki Invariant I (2006) (https://arxiv.org/abs/math/0605278)
[70] CM stability and the generalized Futaki invariant II, Astérisque (2009) no. 328, p. 339-354 (2010)
[71] Deligne pairings and the Knudsen-Mumford expansion, J. Differ. Geom., Volume 78 (2008) no. 3, pp. 475-496 http://projecteuclid.org/euclid.jdg/1207834553 | DOI
[72] Test configurations for K-stability and geodesic rays, J. Symplectic Geom., Volume 5 (2007) no. 2, pp. 221-247 http://projecteuclid.org/euclid.jsg/1202004456 | DOI
[73] A study of the Hilbert-Mumford criterion for the stability of projective varieties, J. Algebraic Geom., Volume 16 (2007) no. 2, pp. 201-255 | DOI
[74] K-stability of constant scalar curvature Kähler manifolds, Adv. Math., Volume 221 (2009) no. 4, pp. 1397-1408 | DOI
[75] A note on the definition of K-stability (2011) (https://arxiv.org/abs/1111.5826)
[76] Note on K-stability of pairs, Math. Ann., Volume 355 (2013) no. 1, pp. 259-272 | DOI
[77] Extremal metrics and K-stability (PhD thesis) (2006) (https://arxiv.org/abs/math/0611002)
[78] Filtrations and test-configurations, Math. Ann., Volume 362 (2015) no. 1-2, pp. 451-484 (With an appendix by Sébastien Boucksom) | DOI
[79] Stacks Project (2016) (http://stacks.math.columbia.edu)
[80] Kähler-Einstein metrics with positive scalar curvature, Invent. Math., Volume 130 (1997) no. 1, pp. 1-37 | DOI
[81] K-stability and Kähler-Einstein metrics, Comm. Pure Appl. Math., Volume 68 (2015) no. 7, pp. 1085-1156 | DOI
[82] Height and GIT weight, Math. Res. Lett., Volume 19 (2012) no. 4, pp. 909-926 | DOI
[83] Test configurations and Okounkov bodies, Compos. Math., Volume 148 (2012) no. 6, pp. 1736-1756 | DOI
[84] The arithmetic Hodge index theorem for adelic line bundles, Mathematische Annalen (2016), pp. 1-49
[85] Commutative algebra. Vol. II, Springer-Verlag, New York-Heidelberg, 1975, x+414 pages (Reprint of the 1960 edition, Graduate Texts in Mathematics, Vol. 29)
Cited by Sources: