Suppose that is a closed countably -rectifiable set whose complement consists of more than one connected component. Assume that the -dimensional Hausdorff measure of is finite or grows at most exponentially near infinity. Under these assumptions, we prove a global-in-time existence of mean curvature flow in the sense of Brakke starting from . There exists a finite family of open sets which move continuously with respect to the Lebesgue measure, and whose boundaries coincide with the space-time support of the mean curvature flow.
Supposons que est un ensemble dénombrable fermé -rectifiable dont le complément n’est pas connexe. Nous assumons que la mesure de Hausdorff -dimensionnelle de est finie ou sa croissance est au plus exponentielle. Nous prouvons l’existence globale du flot de la courbure moyenne au sens de Brakke au départ de . Il existe une famille finie d’ensembles ouverts qui se déplacent d’une manière continue par rapport à la mesure de Lebesgue et dont les bords coïncident avec le support du flot de la courbure moyenne.
Revised:
Accepted:
Published online:
Keywords: mean curvature flow, varifold, geometric measure theory
Mot clés : mouvement par courbure moyenne, varifold, théorie de la mesure géométrique
@article{AIF_2017__67_1_43_0, author = {Kim, Lami and Tonegawa, Yoshihiro}, title = {On the mean curvature flow of grain boundaries}, journal = {Annales de l'Institut Fourier}, pages = {43--142}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {1}, year = {2017}, doi = {10.5802/aif.3077}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3077/} }
TY - JOUR AU - Kim, Lami AU - Tonegawa, Yoshihiro TI - On the mean curvature flow of grain boundaries JO - Annales de l'Institut Fourier PY - 2017 SP - 43 EP - 142 VL - 67 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3077/ DO - 10.5802/aif.3077 LA - en ID - AIF_2017__67_1_43_0 ER -
%0 Journal Article %A Kim, Lami %A Tonegawa, Yoshihiro %T On the mean curvature flow of grain boundaries %J Annales de l'Institut Fourier %D 2017 %P 43-142 %V 67 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3077/ %R 10.5802/aif.3077 %G en %F AIF_2017__67_1_43_0
Kim, Lami; Tonegawa, Yoshihiro. On the mean curvature flow of grain boundaries. Annales de l'Institut Fourier, Volume 67 (2017) no. 1, pp. 43-142. doi : 10.5802/aif.3077. https://aif.centre-mersenne.org/articles/10.5802/aif.3077/
[1] On the first variation of a varifold, Ann. of Math., Volume 95 (1972), pp. 417-491
[2] Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc., 165, American Mathematical Soc., 1976, 199 pages
[3] Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, Oxford: Clarendon Press, 2000, xviii+434 pages
[4] Curvature bound for curve shortening flow via distance comparison and a direct proof of Grayson’s theorem, J. Reine Angew. Math., Volume 653 (2011), pp. 179-187
[5] Lecture notes on mean curvature flow, barriers and singular perturbations, Pisa: Edizioni della Normale, 2013, vii+329 pages | DOI
[6] Curvature evolution of nonconvex lens-shaped domains, J. Reine Angew. Math., Volume 656 (2011), pp. 17-46
[7] Grain growth movie (http://facstaff.susqu.edu/brakke/)
[8] The motion of a surface by its mean curvature, Mathematical Notes, 20, Princeton University Press, 1978, 240 pages
[9] The surface evolver, Experiment. Math., Volume 1 (1992) no. 2, pp. 141-165
[10] On three-phase boundary motion and the singular limit of a vector-valued Ginzburg–Landau equation, Arch. Rational Mech. Anal., Volume 124 (1993) no. 4, pp. 355-379
[11] Self-similar solutions of a 2-D multiple-phase curvature flow, Phys. D, Volume 229 (2007) no. 1, pp. 22-34
[12] Motion by curvature of planar curves with end points moving freely on a line, Math. Ann., Volume 350 (2011) no. 2, pp. 277-311
[13] Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., Volume 33 (1991) no. 3, pp. 749-786
[14] Minimal surfaces and mean curvature flow, Surveys in geometric analysis and relativity (Adv. Lect. Math.), Volume 20, Int. Press, Somerville, MA, 2011, pp. 73-143
[15] Regularity theory for mean curvature flow, Progress in Nonlinear Differential Equations and their Applications, 57, Birkhäuser Boston, 2004, xiv+165 pages
[16] Motion of level sets by mean curvature. I, J. Differential Geom., Volume 33 (1991) no. 3, pp. 635-681
[17] Motion of level sets by mean curvature. IV, J. Geom. Anal., Volume 5 (1995) no. 1, pp. 79-116
[18] Measure theory and fine properties of functions, Textbooks in Mathematics, CRC Press, 2015, 309 pages
[19] Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 153, Springer-Verlag, 1969, xiv+676 pages
[20] Mean curvature motion of triple junctions of graphs in two dimensions, Comm. PDE, Volume 35 (2010) no. 2, pp. 302-327
[21] The existence problem for Steiner networks in strictly convex domains, Arch. Ration. Mech. Anal., Volume 200 (2011) no. 2, pp. 361-404
[22] The heat equation shrinking convex plane curves, J. Differential Geom., Volume 23 (1986), pp. 69-96
[23] Nonlinear stability of stationary solutions for curvature flow with triple junction, Hokkaido Math. J., Volume 38 (2009) no. 4, pp. 721-769
[24] Surface evolution equations. A level set approach, Monographs in Mathematics, 99, Basel: Birkhäuser, 2006, xii+264 pages
[25] The heat equation shrinks embedded plane curves to round points, J. Differential Geom., Volume 29 (1987) no. 2, pp. 285-314
[26] Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom., Volume 31 (1990), pp. 285-299
[27] Stability of stationary interfaces of binary-tree type, Calc. Var. PDE, Volume 22 (2005) no. 4, pp. 375-389
[28] Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Differential Geom., Volume 38 (1993) no. 2, pp. 417-461
[29] Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc., 108, American Mathematical Soc., 1994, 90 pages
[30] Singularities of mean curvature flow of surfaces (1995) (http://www.math.ethz.ch/~ilmanen/papers/sing.ps)
[31] On short time existence for the planar network flow (http://arxiv.org/abs/1407.4756)
[32] A general regularity theory for weak mean curvature flow, Calc. Var. PDE., Volume 50 (2014), pp. 1-68
[33] Evolution of grain boundaries, Math. Models Methods Appl. Sci., Volume 11 (2001) no. 4, pp. 713-729
[34] Regularity of the Brakke flow, Freie Universität Berlin (Germany) (2014) (Ph. D. Thesis)
[35] Motion by curvature of planar networks II, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 15 (2016), pp. 117-144
[36] Motion by curvature of planar networks, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 3 (2004) no. 2, pp. 235-324
[37] Lecture notes on mean curvature flow, Progress in Mathematics, 290, Basel: Birkhäuser, 2011, xii+166 pages
[38] Second order rectifiability of integral varifolds of locally bounded first variation, J. Geom. Anal., Volume 23 (2013) no. 2, pp. 709-763
[39] Uniqueness of self-similar solutions to the network flow in a given topological class, Comm. PDE, Volume 36 (2011) no. 1–3, pp. 185-204
[40] Evolution of convex lens-shaped networks under curve shortening flow, Trans. Amer. Math. Soc., Volume 363 (2011) no. 5, pp. 2265-2294
[41] Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis (Australian National University), Volume 3 (1983), vii+272 pages
[42] Boundary value problems of mathematical physics VIII, American Mathematical Society, Providence, R.I., 1975
[43] Existence and regularity of mean curvature flow with transport term in higher dimensions, Math. Ann., Volume 364 (2016) no. 3–4, pp. 857-935
[44] Integrality of varifolds in the singular limit of reaction-diffusion equations, Hiroshima Math. J., Volume 33 (2003) no. 3, pp. 323-341
[45] A second derivative Hölder estimate for weak mean curvature flow, Adv. Cal. Var., Volume 7 (2014) no. 1, pp. 91-138
[46] The blow up method for Brakke flows: networks near triple junctions, Arch. Ration. Mech. Anal., Volume 221 (2016) no. 3, pp. 1161-1222
[47] Stratification of minimal surfaces, mean curvature flows, and harmonic maps, J. Reine Angew. Math., Volume 488 (1997), pp. 1-35
Cited by Sources: