Nous étudions la clôture algébrique et sa relation avec la clôture définissable dans les groupes libres et plus généralement dans les groupes hyperboliques sans torsion. Pour un groupe hyperbolique sans torsion et un sous-groupe non abélien de , on décrit comme un groupe constructible à partir de la clôture algébrique de au-dessus de sous-groupes cycliques. On en déduit en particulier, que la clôture algébrique de est de type fini, quasiconvexe et hyperbolique.
Supposons que est libre. Alors la clôture définissable de est un facteur libre de la clôture algébrique de et les rangs de ces groupes est borné par celui de . On montre que la clôture algébrique de coïncide avec le groupe sommet contenant dans la décomposition JSJ cyclique et malnormal de relative à . Si le rang de est plus grand que , on démontre que a un sous-groupe dont la clôture définissable est un sous-groupe propre de la clôture algébrique de . Cela répond en particulier à une question de Sela.
We study algebraic closure and its relation with definable closure in free groups and more generally in torsion-free hyperbolic groups. Given a torsion-free hyperbolic group and a nonabelian subgroup of , we describe as a constructible group from the algebraic closure of along cyclic subgroups. In particular, it follows that the algebraic closure of is finitely generated, quasiconvex and hyperbolic.
Suppose that is free. Then the definable closure of is a free factor of the algebraic closure of and the rank of these groups is bounded by that of . We prove that the algebraic closure of coincides with the vertex group containing in the generalized malnormal cyclic JSJ-decomposition of relative to . If the rank of is bigger than , then has a subgroup such that the definable closure of is a proper subgroup of the algebraic closure of . This answers a question of Sela.
Accepté le :
Publié le :
Keywords: Definable closure, algebraic closure, free groups, hyperbolic groups, JSJ-decompositions
Mot clés : Clôture définissable, clôture algébrique, groupes libres, groupes hyperboliques, JSJ-décompositions
Ould Houcine, Abderezak 1 ; Vallino, Daniele 2
@article{AIF_2016__66_6_2525_0, author = {Ould Houcine, Abderezak and Vallino, Daniele}, title = {Algebraic and definable closure in free groups}, journal = {Annales de l'Institut Fourier}, pages = {2525--2563}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {6}, year = {2016}, doi = {10.5802/aif.3071}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3071/} }
TY - JOUR AU - Ould Houcine, Abderezak AU - Vallino, Daniele TI - Algebraic and definable closure in free groups JO - Annales de l'Institut Fourier PY - 2016 SP - 2525 EP - 2563 VL - 66 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3071/ DO - 10.5802/aif.3071 LA - en ID - AIF_2016__66_6_2525_0 ER -
%0 Journal Article %A Ould Houcine, Abderezak %A Vallino, Daniele %T Algebraic and definable closure in free groups %J Annales de l'Institut Fourier %D 2016 %P 2525-2563 %V 66 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3071/ %R 10.5802/aif.3071 %G en %F AIF_2016__66_6_2525_0
Ould Houcine, Abderezak; Vallino, Daniele. Algebraic and definable closure in free groups. Annales de l'Institut Fourier, Tome 66 (2016) no. 6, pp. 2525-2563. doi : 10.5802/aif.3071. https://aif.centre-mersenne.org/articles/10.5802/aif.3071/
[1] Residually free groups, Proc. London Math. Soc, Volume 17 (1967), pp. 402-418 | DOI
[2] Algebraic geometry over groups. I. Algebraic sets and ideal theory, J. Algebra, Volume 219 (1999) no. 1, pp. 16-79 | DOI
[3] Stable actions of groups on real trees, Invent. Math., Volume 121 (1995) no. 2, pp. 287-321 | DOI
[4] Weak forms of elimination of imaginaries, MLQ Math. Log. Q., Volume 50 (2004) no. 2, pp. 126-140 | DOI
[5] Limit groups as limits of free groups: compactifying the set of free groups, Israel Journal of Mathematics, Volume 146 (2005), pp. 1-175 | DOI
[6] Model theory, North-Holland, Amsterdam, 1973, xii+550 pages
[7] Periodic automorphisms of free groups, Comm. Algebra, Volume 3 (1975), pp. 195-201 | DOI
[8] Conjugacy classes of solutions to equations and inequations over hyperbolic groups, J. Topol., Volume 3 (2010) no. 2, pp. 311-332 | DOI
[9] Actions of finitely generated groups on -trees, Ann. Inst. Fourier, Volume 58 (2008) no. 1, pp. 159-211 | DOI
[10] JSJ decompositions: definitions, existence, uniqueness. I: The JSJ deformation space (http://arxiv.org/abs/0911.3173v1)
[11] JSJ decompositions: definitions, existence, uniqueness. II. Compatibility and acylindricity (http://arxiv.org/abs/1002.4564v1)
[12] Model theory, Encyclopedia of Mathematics and its Applications, 42, Cambridge University Press, Cambridge, 1993, xiii+772 pages
[13] Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc, Volume 220 (1979), 192 pages
[14] On the structure of two-generated hyperbolic groups, Math. Z., Volume 231 (1999) no. 4, pp. 783-801 | DOI
[15] Irreducible affine varieties over a free group. I. Irreducibility of quadratic equations and Nullstellensatz, J. Algebra, Volume 200 (1998) no. 2, pp. 472-516 | DOI
[16] Irreducible affine varieties over a free group. II. Systems in triangular quasi-quadratic form and description of residually free groups, J. Algebra, Volume 200 (1998) no. 2, pp. 517-570 | DOI
[17] An analogue of the torus decomposition theorem for certain Poincaré duality groups, Proc. London Math. Soc, Volume 60 (1990) no. 3, pp. 503-529 | DOI
[18] Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 89, Springer-Verlag, Berlin, 1977, xiv+339 pages
[19] Model Theory : An Introduction, Graduate Texts in Mathematics, 217, Springer-Verlag, New york, 2002, viii+342 pages
[20] Fixed subgroups are compressed in free groups, Comm. Algebra, Volume 32 (2004) no. 10, pp. 3921-3935 | DOI
[21] An invitation to model-theoretic galois theory (2010) (http://arxiv.org/abs/0909.4340)
[22] Algebraic extensions in free groups, Geometric group theory (Trends Math.), Birkhäuser, Basel, 2007, pp. 225-253
[23] Limit Groups of Equationally Noetherian Groups, Geometric group theory (Trends Math.), Birkhäuser, Basel, 2007, pp. 103-119
[24] Note on free conjugacy pinched one-relator groups (2010) (preprint)
[25] Homogeneity and prime models in torsion-free hyperbolic groups, Confluentes Mathematici, Volume 3 (2011) no. 1, pp. 121-155 | DOI
[26] Plongements élémentaires dans un groupe hyperbolique sans torsion, Université de Caen/Basse-Normandie, France (2008) (Ph. D. Thesis)
[27] Homogeneity in the free group, Duke Math. J., Volume 161 (2012) no. 13, pp. 2635-2668 | DOI
[28] Une théorie de Galois imaginaire, J. Symbolic Logic, Volume 48 (1983) no. 4, pp. 1151-1170 | DOI
[29] Makanin-razborov diagrams for hyperbolic groups (2010) (preprint)
[30] Structure and rigidity in hyperbolic groups. I, Geom. Funct. Anal., Volume 4 (1994) no. 3, pp. 337-371 | DOI
[31] Cyclic splittings of finitely presented groups and the canonical JSJ decomposition, Ann. of Math., Volume 146 (1997) no. 1, pp. 53-109 | DOI
[32] Acylindrical accessibility for groups, Invent. Math., Volume 129 (1997) no. 3, pp. 527-565 | DOI
[33] Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank Lie groups. II, Geom. Funct. Anal., Volume 7 (1997) no. 3, pp. 56-593 | DOI
[34] Diophantine geometry over groups. I. Makanin-Razborov diagrams, Publ. Math. Inst. Hautes Études Sci., Volume 93 (2001), pp. 31-105 | DOI
[35] Diophantine geometry over groups. VIII: Stability (2006) (preprint, available at http://www.ma.huji.ac.il/~zlil/)
[36] Diophantine geometry over groups. IX: Envelopes and Imaginaries (2009) (http://arxiv.org/abs/0909.0774)
[37] Diophantine geometry over groups. VII. The elementary theory of a hyperbolic group, Proc. Lond. Math. Soc., Volume 99 (2009) no. 1, pp. 217-273 | DOI
[38] Note on chain conditions in free groups, Osaka Math.J., Volume 3 (1951) no. 2, pp. 221-225
[39] Algebraic and definable closure in free groups, Université Lyon 1, France / Università di Torino, Italy (2012) (Ph. D. Thesis)
[40] Subgroup separability of limit groups, Univ. London, UK (2006) (Ph. D. Thesis)
Cité par Sources :