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ALGEBRAIC AND DEFINABLE CLOSURE IN FREE
GROUPS

by Abderezak OULD HOUCINE & Daniele VALLINO

ABSTRACT. — We study algebraic closure and its relation with definable clo-
sure in free groups and more generally in torsion-free hyperbolic groups. Given a
torsion-free hyperbolic group I' and a nonabelian subgroup A of I', we describe I'
as a constructible group from the algebraic closure of A along cyclic subgroups. In
particular, it follows that the algebraic closure of A is finitely generated, quasicon-
vex and hyperbolic.

Suppose that T' is free. Then the definable closure of A is a free factor of the
algebraic closure of A and the rank of these groups is bounded by that of I'. We
prove that the algebraic closure of A coincides with the vertex group containing
A in the generalized malnormal cyclic JSJ-decomposition of I" relative to A. If the
rank of I is bigger than 4, then I" has a subgroup A such that the definable closure
of A is a proper subgroup of the algebraic closure of A. This answers a question of
Sela.

RESUME. — Nous étudions la cloéture algébrique et sa relation avec la cléture
définissable dans les groupes libres et plus généralement dans les groupes hyperbo-
liques sans torsion. Pour un groupe hyperbolique sans torsion I" et un sous-groupe
non abélien A de I', on décrit I' comme un groupe constructible a partir de la cloture
algébrique de A au-dessus de sous-groupes cycliques. On en déduit en particulier,
que la cléture algébrique de A est de type fini, quasiconvexe et hyperbolique.

Supposons que I est libre. Alors la cloture définissable de A est un facteur libre
de la cloture algébrique de A et les rangs de ces groupes est borné par celui de I'. On
montre que la cléture algébrique de A coincide avec le groupe sommet contenant
A dans la décomposition JSJ cyclique et malnormal de I' relative a A. Si le rang
de I' est plus grand que 4, on démontre que I' a un sous-groupe A dont la cléture
définissable est un sous-groupe propre de la cloture algébrique de A. Cela répond
en particulier & une question de Sela.

Keywords: Definable closure, algebraic closure, free groups, hyperbolic groups, JSJ-
decompositions.
Math. classification: 03C68, 11U09, 20E05, 20F67, 05E18.
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1. Introduction

In field theory, an element b is called algebraic over a field K if it is
a root of some non-zero polynomial with coefficients in K. This notion is
very fruitful and has many applications in mathematics, as Galois theory
shows. Its analogues in more general contexts were extensively studied.
Model theory generalizes the notion as follows. Given a model M, in a
first-order language £, and a subset A of M, an element b is said to be
algebraic over A, if there exists an L-formula ¢(x), with parameters from
A, such that M satisfies p(b) and the set {¢c € M|M = ¢(c)} is finite. The
algebraic closure of A, denoted acl(A), is the set of algebraic elements over
A If {c € MIM [= ¢(c)} is a singleton, then b is said to be definable over
A, and one defines analogously the definable closure of A, denoted dcl(A),
as the set of definable elements over A.

It is well-known, in the context of algebraically closed fields, that the
above model-theoretic notion coincides with the usual one by using the
quantifier elimination theorem of Tarski; i.e. b is algebraic over K (in the
sense of the theory of fields) if and only if b € acl(A) (see for instance [19,
Proposition 3.2.15]).

Algebraic closure plays an important role in the study of strongly min-
imal theories and more generally finite dimensional and stable theories.
For instance it permits to define, in a suitable context, Zariski’s geome-
tries. It is also an essential piece in the study of model-theoretic Galois
theory. Poizat has developed a Galois theory for theories which eliminate
imaginaries [28], and Casanovas and Farré studied degree of elimination
of imaginaries needed to have a Galois correspondance [4]. More recently,
Medvedev and Takloo-Bighash have carried out some notions of Galois
theory in the setting of first-order theories [21].

Sela has shown that free groups and more generally torsion-free hyper-
bolic groups are stable [35]. He has also shown a geometric elimination of
imaginaries in torsion-free hyperbolic groups [36]. This can be certainly
used to develop Galois theory of free groups. Miasnikov, Ventura and Weil
have developed algebraic extensions in free groups [22], which correspond
essentially to the notion of algebraic closure defined above but restricted
to quantifier-free formulas.

In 2008, Sela asked, given a free group F of finite rank and a subset A of
F, if the algebraic and the definable closure of A coincide. In this paper we
study the algebraic and the definable closure in free groups. In particular
we give a negative answer to the question of Sela for free groups of rank
> 4 and a positive answer for free groups of rank 2.
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It is rather easy to see that acl(A) and dcl(A) are L-substructures of
M, and in particular, when M is a group, they are subgroups. As usual,
to axiomatize group theory, we use the language £ = {.,7!, 1}, where . is
interpreted as multiplication, ~! is interpreted as the function which sends
every element to its inverse and 1 is interpreted as the trivial element. Let
I" be a group and A a subset of I'. It is not hard to see that A and the
subgroup generated by A have the same algebraic closure; similarly for the
definable closure. Hence, without loss of generality we may assume that A
is a subgroup. We note also that if I" is torsion-free and hyperbolic and if
A is nontrivial and abelian, then the algebraic closure and the definable
closure of A coincide with the centralizer of A (see Lemma 3.1).

The main results of this paper are as follows. One of the first natural
questions is to see the constructibility of I' from the algebraic closure.

THEOREM 1.1. — Let I' be a torsion-free hyperbolic group and A a
nonabelian subgroup of I'. Then I' can be constructed from acl(A) by a
finite sequence of amalgamated free products and HNN-extensions along
cyclic subgroups. In particular, acl(A) is finitely generated, quasiconvex
and hyperbolic.

In geometric group theory, given a finitely generated group I and a set C
of subgroups of I, one studies the link between the various possible graph
of groups decompositions of T', with edge groups from C (i.e. splittings
of T over C). Grushko and Kurosh showed that there is a canonical free
decomposition (i.e. with trivial edge groups) from which all other free de-
compositions can be obtained by some particular operations. At this point,
it becomes natural to seek similar canonical splittings for larger classes of
groups C.

Roughly speaking a JSJ-decomposition of I" over C is a canonical graph of
groups decomposition of I over C, from which all other splittings of I" over
C can be obtained through some natural operations. The uniqueness of such
a decomposition is not generally guaranteed, but all these decompositions
share the most important necessary properties.

The theory of JSJ-decompositions has its origin in the work of Johann-
son, and Jaco and Shalen, who developed a theory of cutting irreducible
three-dimensional manifolds into pieces along tori and annuli [13]. One can
describe such decompositions in terms of splittings of the relevant funda-
mental group. A group theoretic version was developed by Kropholler [17].
Later Sela constructed JSJ-decompositions for torsion-free hyperbolic
groups over cyclic subgroups [33] and then Sela and Rips [31] extended
it to general torsion-free finitely presented groups. Other constructions of

TOME 66 (2016), FASCICULE 6



2528 Abderezak OULD HOUCINE & Daniele VALLINO

JSJ-decompositions for various classes of groups C have been carried out
by many authors.

JSJ-decompositions have many applications and were successfully used
by Sela to solve the isomorphism problem of torsion-free hyperbolic groups
and to develop diophantine geometry over free (and hyperbolic) groups in
the solution of Tarski’s conjecture.

The following theorem connects the notions of algebraic closure and
cyclic JSJ-decompositions in free groups. For the precise notions of JSJ-
decompositions which we use, we refer the reader at the end of Section 2.

THEOREM 1.2. — Let I' be a free group of finite rank and let A be a
nonabelian subgroup of I'. Then acl(A) coincides with the vertex group
containing A in the generalized malnormal cyclic JSJ-decomposition of T’
relative to A.

Strictly speaking the notion of JSJ-decompositions used in the previ-
ous theorem is not a JSJ-decomposition in the sense of [10]. However it
possesses the most important properties of JSJ-decompositions of [10]. By
using the definition given in [10], the conclusion of the previous theorem is
the following : acl(A) coincides with the elliptic abelian neighborhood of
the vertex group containing A in the cyclic JSJ-decomposition of I" relative
to A, where we suppose that T' is freely indecomposable relative to A.

We will also be interested in a restricted notion of the algebraic closure.
Given a group I' and a subgroup A, the restricted algebraic closure, de-
noted racl(A), is defined as follows. An element ~ is in racl(A) if and only
if its orbit {f(y)|f € Aut(F/A)} is finite, where Aut(F/A) is the group of
automorphisms of F fixing A pointwise. Note that racl(A) is a subgroup
and contains acl(A). It turns out that, when T' is a torsion-free hyper-
bolic group and A is nonabelian, racl(A) coincides with the vertex group
containing A in the generalized malnormal cyclic JSJ-decomposition of T’
relative to A (see Proposition 4.4). Similarly here by using the definition
of JSJ-decompositions of [10], the conclusion is that racl(A) coincides with
the elliptic abelian neighborhood of the vertex group containing A in the
cyclic JSJ-decomposition of T relative to A. Theorem 1.2 shows that in free
groups, we get an identity between restricted and algebraic closure.

Notice that, as a corollary of the general version of Theorem 1.1 (see
Corollary 3.7), we have the following. If I is a free group of finite rank and
A is a nonabelian subgroup of I, then the rank of acl(A) is bounded by
the rank of T. In fact, we will show that if acl(A) < K < T, where K is
finitely generated, then rk(acl(A)) < rk(K); that is acl(A) is compressed
in the sense of [20].

ANNALES DE L’INSTITUT FOURIER
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Regarding the relation between algebraic and definable closure, though
generally they are different, at least we can assert the following.

THEOREM 1.3. — Let T be a free group of finite rank and A a nonabelian
subgroup of I'. Then dcl(A) is a free factor of acl(A).

Combining this with Lemma 3.1 below, it follows that when the rank of I"
is two, then acl(A) = dcl(A) for any nontrivial subgroup A of T'. However,
this is not true in higher rank free groups.

THEOREM 1.4. — Any free group I' of rank n > 4 can be written as an
HNN-extension ' = (H,t|ut = v), such that H has a proper subgroup A
with acl(A) = H and dcl(A) = A.

This paper is organized as follows. In next section we recall the material
that we require around notions in model theory, I'-limit groups and the
tools needed in the sequel. Section 3 concerns constructibility and its main
purpose is the proof of Theorem 1.1. The proof of that theorem follows
the same strategy as the one used by Sela to prove constructibility of limit
groups; however we need to analyze the place of algebraic closure more
carefully. Section 4 is devoted to the study of the place of algebraic closure
in the JSJ-decomposition and we show Theorem 1.2. Section 5 deals with
the proofs of Theorems 1.3 and 1.4.

2. Prerequisites

The aim of this section is to give the background needed in the sequel.
The first subsection deals with notions from model theory; for more details
the reader is referred to [12, 19]. Notions around limit groups and abelian
JSJ-decompositions are exposed in the second subsection.

2.1. Model theory

Given a language £, an L-structure M and an L-formula ¢(Z), where
Z is a tuple of variables of length n, we denote by (M) the set {m €
M™M= o(m)}. Let M be an L-structure and A a subset of M. The al-
gebraic closure (resp. existential algebraic closure) of A, denoted acla(A)
(vesp. acl3,(A)), is the set of elements z € M such that there exists a £-
formula (resp. an existential £-formula) ¢(x) with parameters from A such
that M | ¢(z) and ¢(M) is finite. The definable closure (resp. existential
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definable closure) of A, denoted dclpq(A) (vesp. del3, (A)), is the set of ele-
ments z € M such that there exists a formula (resp. an existential formula)
¢(z) with parameters from A such that M = ¢(z) and ¢(M) is a singleton.
The previous notions are connected to other notions of closedness, which
we give in this definition.

DEFINITION 2.1. — Let M be an L-structure and let A be a subset of
M. We define the restricted algebraic closure, denoted by raciy(A), to be
the set of elements x € M such that the orbit {f(z)|f € Aut(M/A)} is
finite, and we define the restricted definable closure, denoted by rdcla(A),
to be the set of elements x € M such that the previous orbit is a singleton;
here Aut(M/A) denotes the group of automorphisms of M that fix A
pointwise. To avoid heaviness of notation, the subscript M will be omitted
if there is no possible confusion.

The following lemma brings together elementary facts about the previ-
ously defined closures. Its proof is left to the reader.

LEMMA 2.2. — Let M be an L-structure, and A, B subsets of M.

(1) acl(A), dcl(A), acl?(A), dcl>(A), racl(A), rdcl(A) are L-substruc-
tures of M.

(2) del(A) < acl(A) < racl(A), del(A) < rdcl(A).

(3) acl(A) = acl(acl(A)) = acl(acl(A)) = acl(dcl(A)) = dcl(acl(A)) =
del? (acl(A)).

(4) AC B = acl(A) C acl(B) and similarly for the other notions of
closedness.

(5) If © € acl(A), then there exists a finite subset Ay of A such that
x € acl(Ap).

(6) If M is saturated and |A| < | M| then acl(A) = racl(A); similarly
for definable closure.

Recall that the type of a tuple a € M™ over a subset A, denoted tp(alA),
is the set of formulas ¢(Z) with parameters from A such that M & ¢(a),
and the existential type, denoted tp=(a|A), is the set of existential formulas
©(Z) with parameters from A such that M = ¢(a). The following propo-
sition is standard, but for completeness we provide a proof of the second
property (2) for which we did not find an explicit reference.

PROPOSITION 2.3. — Let M be an L-structure, a,b € M™ and A a
subset of M.

(1) tp(alA) = tp(b|A) if and only if there exist an elementary extension
N of M and an automorphism f € Aut(N/A) sending a to b.

ANNALES DE L’INSTITUT FOURIER
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(2) tp?(alA) C tp?(bJA) if and only if there exist an elementary exten-
sion N' of M and a monomorphism f : N — N, fixing A pointwise
and sending a to b.

Proof.
(1) See for instance [19, Theorem 4.1.5].

(2) Clearly, if there is some elementary extension N of M and and a
monomorphism f : N — N/, fixing A pointwise and sending @ to b, then
tp?(alA) C tp?(b|A). Tt remains to show the converse. Set Ny = M and let
N1 be a | M]-saturated elementary extension of M. Using the saturation of
N1, we get a monomorphism fo : Ny — N satisfying fo(a) = b and fixing A
pointwise. Using a similar argument, we build an elementary chain (N );en,
N; = Nii1, with a sequence of monomorphisms (f; : N; = Ny1)ien such
that fi [ Ni = fiy1 | N for every i € N. By setting N' = [J,cyN; and
J = Usen fi, we get the required elementary extension and the required
monomorphism. O

For the reader’s convenience, we recall the definition of ultrapowers in
the particular case of group theory. An ultrafilter on a set I is a finitely
additive probability measure p : P(I) — {0,1}. An ultrafilter p is called
nonprincipal if u(X) = 0 for every finite subset X C I.

Given an ultrafilter 4 on I and a sequence of groups (G;);c; we define
an equivalence relation ~, on [],.; G; by

a= (ai € Gi)ie[ ~u l; = (bl € Gi)ie[ if and only if /,L({Z S ]|ai = bz}) =1.
The set of equivalence classes (] [,; Gi)/ ~, is endowed with a structure
of group by defining
a.b=é if and only if u({i € Ila;.b; = ¢;}) = 1.

The group ([];c; Gi)/ ~p is called the ultraproduct of the family (G;)icr.
When G; = G for all i € I, ([[,c; Gi)/ ~u is called an ultrapower and it is
denoted simply by G*. If i is nonprincipal, then G* is called a nonprincipal
ultrapower.

CONVENTION. — Through this paper we will consider only ultrapowers
on the set of natural numbers; i.e. I = N in the previous definition.

Define 7 : G — G* by 7(g) = (¢9; = g|i € I). Then 7 is an embedding.
Moreover, a theorem of Los [6, Theorem 4.1.9] claims that G is an elemen-
tary subgroup of G*; that is, any sentence with parameters from G which
is true in G is also true in G*. In particular, we note that, for any subset
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A of G, aclg(A) = aclg~(A) and similarly for definable closure and their
existential correspondents.

Recall that a countable model M is called homogeneous, respectively
3-homogeneous, if for any n > 1, for any tuples a, b of M™, if tp™(a) =
tpM(b) (vesp. tpd'(a) = tp2* (b)) then there exists an automorphism of M
which sends @ to b. We note, in particular, that 3-homogeneity implies
homogeneity. For further notions of homogeneity, we refer the reader to [12,
19].

It is shown in [25] and [27] that nonabelian free groups of finite rank are
homogeneous. In the sequel we need the following theorem proved in [25].
Recall also that a group G is said to be freely indecomposable relative to
a subgroup A, if there is no nontrivial free decomposition of G such that
A is contained in one of the factors.

THEOREM 2.4 ([25, Proposition 5.9]). — Let F' be a nonabelian free
group of finite rank and let a be a tuple of F' such that F is freely inde-
composable relative to the subgroup generated by a. Let s be a basis of F'.
Then there exists a universal formula ¢(Z) such that F = ¢(5) and such
that for any endomorphism f of F, if F' = ¢(f(5)) and f fixes a then f
is an automorphism. In particular (F,a) is a prime model of the theory
Th(F,a).

2.2. Limit groups, modular groups & abelian
JSJ-decompositions

Limit groups of free groups have been introduced by Sela [34] to study
equations over free groups. They can be seen, geometrically and alge-
braically, as limits of free groups. This class coincides with the class of
fully residually-free groups, a class of groups introduced by Baumslag [1]
and studied by Kharlampovich and Myasnikov [15, 16] and by many other
authors. We start by giving a definition which uses ultrafilters in a general
context.

DEFINITION 2.5. — Let I" be a group and H a finitely generated group.
Let w be a nonprincipal ultrafilter over N and f = (f, : H — T)pen a
sequence of homomorphisms. Let ker,(f) be the set of elements h € H
such that w({n € N|f,(h) = 1}) = 1. A I'-limit group is a group G such
that there exists a finitely generated group H, a nonprincipal ultrafilter
w and a sequence of homomorphisms f = (f, : H — I'),en such that
G = H/ker,(f).

ANNALES DE L’INSTITUT FOURIER
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Here is a more standard definition.

DEFINITION 2.6. — Let I' be a group and H a finitely generated group.
A sequence of homomorphisms f = (f, : H — I'),en is called stable if, for
any h € H, either f,(h) = 1 for all but finitely many n, or f,(h) # 1 for
all but finitely many n. The stable kernel of f, denoted Kero(f), is the
set of elements h € H such that f,(h) = 1 for all but finitely many n. A
I-limit group is a group G such that there exists a finitely generated group
H and a stable sequence of homomorphisms f = (f, : H — I'),en such
that G = H/Kers(f).

The following lemma explains the relation between the previous notion,
which comes essentially from geometrical considerations, and the universal
theory of the considered group. Its proof can be found in [25, Lemma 2.2)
and [23, Theorem 2.1]. For the definition of universal theories, we refer the
reader to [12, 19] or [23] for a quick overview.

LEMMA 2.7. — Let I" be a group and G a finitely generated group. The
following properties are equivalent.
(1) G is a I'-limit group.
(2) G is a model of the universal theory of T'.
(3) G embeds in every nonprincipal ultrapower of T'.

In dealing with the existential closure in free groups in the next sec-
tion, we must work with homomorphisms that do not necessarily fix the
subgroup under consideration (in our case acl?(A)). We introduce the fol-
lowing definition which is more appropriate in our context.

DEFINITION 2.8. — Let Gy, Gy be groups and H a subgroup of Gy. A
sequence of homomorphisms (f, : G1 — G2)nen bounds H in the limit if
for any h € H there exists a finite subset B(h) of G such that f,,(h) € B(h)
for all but finitely many n.

Next theorem is a slight generalization of similar theorems which appear
in several places [8, 26, 30, 34, 37]. As the proof is almost identical, we just
give the necessary changes implied by the previous definition.

Let C be a class of subgroups of G. By a (C, H)-splitting of G (or a split-
ting of G over C relative to H), we understand a tuple A = (G(V, E), T, ¢),
where G(V, E) is a graph of groups such that each edge group is in C and
H is elliptic, T is a maximal subtree of G(V, E) and ¢ : G — w(G(V, E),T)
is an isomorphism; here m(G(V, E),T) denotes the fundamental group of
G(V, E) relative to T. If C is the class of abelian groups or cyclic groups,
we will just say abelian splitting or cyclic splitting, respectively. Splittings
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of the form Gy xc G or Gixc = (G, t|ct = p(c),c € C) are called one-edge
splittings. Given a group G and a subgroup H of G, G is said to be freely
H-decomposable if G has a nontrivial free decomposition G = G * G such
that H < (1. Otherwise, G is said to be freely H-indecomposable.

THEOREM 2.9. — Let I' be a torsion-free hyperbolic group. Let G be
a finitely generated group and H a nonabelian subgroup of G such that
G is freely H-indecomposable. Let (f, : G — T'),en be a stable sequence
of pairwise distinct homomorphisms with trivial stable kernel and which
bounds H in the limit. Then G admits a nontrivial abelian splitting relative
to H.

Outline of the proof. — Let S be a finite generating set of I' and
(C(T, S),d) the corresponding Cayley graph. Let D be a finite generating
set of G and for each n € N, define the length A, of f,, as maxgep | fn(d)|s,
where |.|s denotes the word length relative to S. Let w be a nonprincipal
ultrafilter over N. Since the given homomorphisms are pairwise distinct,
lim,, ;00 A, = 00. Then G acts on the asymptotic cone (Con, (T, e, A), d,,),
relative to the sequence of observation points e = (e, = 1),en, the se-
quence of scaling factors A = (A, )nen and the ultrafilter w. An argument
similar to the one used in [26, 30] shows that the action is superstable, with
abelian arc stabilizers and trivial tripod stabilizers. What remains to show
in our context is that the action is nontrivial and that H is elliptic.

We claim that H fixes e in Con, (T, e, A). Since, for any h € H, the
set {|f.(h)|s|n € N} is bounded, we have d,,(e, he) = lim,, =Ml — o,
and thus H fixes e as claimed. We claim now that the action is nontrivial.
Since maxgep dy(e,de) = 1, e is not a global fixed point. Since G is finitely
generated, if the action is trivial then there is some global fixed point ¢’,
with e # ¢’. Then H will fix the non-degenerate segment [e, ¢'], though it
is not abelian; a contradiction with the fact that arc stabilizers are abelian.
To get the desired abelian splitting, one may apply [9] or [32]. O

The shortening argument is a key tool in Sela’s study of limit groups.
Roughly speaking, given a sequence of actions of a finitely generated group
G on the Cayley graph of the torsion-free hyperbolic group I', we get an
action of G on some asymptotic cone C of I'; by analyzing this action,
we can find a particular type of automorphisms, called modular automor-
phisms, of G which shorten the length of the sequence of the actions. Here
we briefly recall modular automorphisms and the shortening argument (in
the relative case). For the treatment in the general framework of hyperbolic
groups, we refer the reader to [29].
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DEFINITION 2.10. — Let G be a group, and let A be an abelian one-
edge splitting of G relative to H, with edge group C. Let ¢ € C. A Dehn
twist about ¢ € C' is an automorphism ¢ € Aut(G), defined as follows:

(1) if G = Ax¢ B, H < A, then ¢(a) = a,p(b) = b° for every a € A,

be B.
(2) if G = Ax¢, H < A, with stable letter t, then ¢ | A = idy and
o(t) = te.

Let A = (G(V, E), T, ¢) be a splitting of a group G and ¢, an automor-
phism of the vertex group G,,, v € V. Suppose that for each e € E adjacent
to v, there exists an element g. € G, such that ¢, restricts to a conjuga-
tion by ge on G.. Then there exists an automorphism ¢ of G, called the
standard extension of ¢,, which extends ¢, (see [30, Proposition 5.4] for
more details).

DEFINITION 2.11. — Let A = (G(V, E), T, ) be an abelian splitting of
a group G relative to H and G, an abelian vertex group. Let P be the
subgroup of G,, generated by the incident edge groups. Any automorphism
¢, of G, which fixes P pointwise, and which fixes also H pointwise, has
a standard extension to G. Such an automorphism is called a modular
automorphism of abelian type.

Let A = (G(V, E), T, ¢) be an abelian splitting of a group G relative to
H and v € V. The vertex v is called of surface type, if G, is isomorphic to
the fundamental group of a compact connected surface S with boundary,
which is not a disk or a Moébius band or a cylinder and such that each
edge group G, incident on v is conjugate to the fundamental group of a
boundary component of S.

DEFINITION 2.12. — Let A = (G(V, E),T,¢) be an abelian splitting
of a group G relative to H and v € V be a surface type vertex. Any
automorphism ¢, of G, which restricts to a conjugation by g. to each
incident edge group G, and which fixes also H pointwise, has a standard
extension to G. Such an automorphism is called a modular automorphism
of surface type.

DEFINITION 2.13. — Let G be a group and H a subgroup of G. The
abelian modular group of G relative to H, denoted Mod(G/H), is the
subgroup of Aut(G/H) generated by Dehn twists, modular automorphisms
of abelian type and modular automorphisms of surface type.

We still need a last definition to express the shortening argument:
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DEFINITION 2.14. — Let G be a finitely generated group and H a sub-
group of G. Let I" be a torsion-free hyperbolic group. Let B, A be finite
generating sets of G, I" respectively. A homomorphism f : G — T is said to
be short relative to H if for any o € Mod(G/H), one has

b)|a < b)| 4,
max |f(b)]a < max|foo(b)]a
where |.|4 denotes word length function of I' with respect to A.

THEOREM 2.15. — Let I be a torsion-free hyperbolic group with a finite
generating set A. Let G be a finitely generated group, with a finite gener-
ating set B, and H a nonabelian subgroup of G such that G is freely H-
indecomposable. Let (f, : G — I'),en be a stable sequence of pairwise dis-
tinct homomorphisms with trivial stable kernel and which bounds H in the
limit. Then for any nonprincipal ultrafilter w, w({n €N| f,, is not short})=1.

Outline of the proof. — Let (C(T', A),d) be the corresponding Cayley
graph which is hyperbolic. For each n € N, let A\, = maxgep |fn(d)|a.
Let w be a nonprincipal ultrafilter over N. Since the given homomorphisms
are pairwise distinct, lim,, A, = oo. Then G acts on the asymptotic cone
(T,d,) = (Cony (T, e, \),d,), which is a real tree, relative to the sequence
of observation points e = (e,, = 1),en, the sequence of scaling factors A =
(An)nen and the ultrafilter w. As in the outline of the proof of Theorem 2.9,
the action is nontrivial, superstable, with abelian arc stabilizers and trivial
tripod stabilizers, and H fixes e.

By Rips decomposition (see [3, 32] or Guirardel’s version [9]), T has a
decomposition as a graph of actions A = (G(V, E), (T,)vev, (Pe)ecE), Where
each vertex action of G, is either of symplicial type, or of surface type (IET
type) or of abelian type (axial type).

Set B = {b1,...,bq}. Let I be the set of indices 7 such that the segment
[e, b;e] intersects a surface type component, let J be the set of indices i
such that ¢ € I and [e, b;e] intersects an abelian type component; finally,
let K be the set of indices ¢ such that [e, b;e] lies in a simplicial component.

By using [30, Proposition 5.2], it is possible to construct a composi-
tion of surface type modular automorphisms oy such that d (e, o1(b;)e) <
dy(e,bie) for all i € I and o1(b;) = b; for all i & I. Let J' C T U J be
the set of indices ¢ such that [e,o1(b;)e] intersects an abelian component.
In that case, it is possible to find a composition of abelian type modu-
lar automorphisms oy such that d, (e, o2 0 o1(b;)e) < dy (e, o1(b;)e) for all
i € J and o9 0 01(b;) = o1(b;) for all i ¢ J'. Finally let K’ be the set
of indices 4 such that [e, o9 o o1(b;)e] intersects a simplicial component.
In that case, we cannot ensure the existence of a unique automorphism;
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however, we show that there exists a subset U C N such that w(U) =1
and such that for any n € U, there exists a Dehn twist 7,, such that
dp(en,Tn 002001 (fn(bi))en) < dp(en, o2 001(fn(bi))ey,) for all i € K’ and
dp(en,Tn 0030 01(fn(bi))en) = dn(en, 02 0 01(fn(b;))en) for all i & K'.

There exists U; C N such that for any n € Uy, d,(en,01(fn(bi))en) <
dp(en, fu(bi)ey) forany i € T and o1 (f,(b;)) = fn(b;) for all ¢ & I. Similarly,
there exists Us C N such that for any n € Us, d,(en, 02 0 01(fn(b:i))en) <
dp(en,01(fn(bi))en) for any i € J" and o2 0 01 (fn(bi)) = o1(fn(b;)) for all
1 ¢ J'. By taking o, = 1,002007 and choosing U’ = UNU;NU; C N we have
w(U") =1, and for any b; € B, dy(en, an(fn(bi))en) < dn(en, fn(bi)en) for
any n € U’ which proves the desired result. For more details, the reader
can see [26, 29, 39, 40]. O

One of applications of the shortening argument was the proof by Rips
and Sela [30] of the fact that the modular group has a finite index in the
group of automorphisms. This can be generalized slightly as follows (see
also [26]).

THEOREM 2.16. — Let I" be a torsion-free hyperbolic group, G a finitely
generated group, H a nonabelian subgroup of G such that G is freely H-
indecomposable. Let e : H — T" be an embedding. We suppose that there
exists at least an embedding of G in I" whose restriction to H is e. Then
there exists a finite set { f1, ..., fp} of embeddings of G in ', whose restric-
tion to H coincides with e and such that for any embedding f : G — T,
whose restriction to H coincides with e, there exists a modular automor-
phism 0 € Mod(G/H) such that f € {fio0,...,fpo0}.

Proof. — Let (f, : G — T'),en be the sequence of all embeddings of
G in T' whose restriction to H is e. For each n € N, choose a modular
automorphism o,, € Mod(G/H) such that f, oo, is short. Suppose for a
contradiction that the set I = {f, 0o,|n € N} is infinite. Then it is possible
to extract a subsequence of pairwise distinct elements from I. Clearly such
a subsequence is stable, has trivial stable kernel and bounds H in the limit.
Hence, by Theorem 2.15 for an infinite set U C N, for every n € U, f, o0,
is not short; which is a contraditcion. O

COROLLARY 2.17. — Let I' be a torsion-free hyperbolic group and H
a nonabelian subgroup such that T is freely H-indecomposable. Then any
monomorphism f: ' — T fixing H pointwise is an automorphism.

Proof. — By Theorem 2.16, there exists n,m € N such that n > m and
f™ = f™or for some 7 € Mod(T'/H). Therefore f"~™ = 7 and thus f is
surjective. (|
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One of the important concepts in Sela’s study of limit groups is the
shortening quotient.

DEFINITION 2.18. — Let I' be a torsion-free hyperbolic group. Let G
be a finitely generated group, H a nonabelian subgroup of G such that G
is freely H-indecomposable. Let f = (f, : G — I'),en be a stable sequence
of pairwise distinct homomorphisms which bounds H in the limit and such
that each f,, is short. The group SG = G/Kers(f) is called a shortening
quotient of G.

THEOREM 2.19. — Every shortening quotient is a proper quotient.

Proof. — If it is not the case then the stable kernel is trivial; thus by
Theorem 2.15, for infinitely many n, f,, is not short; a contradiction. [

Another important application in this context of a more general version
of the shortening argument is the proof by Sela [37] of the descending chain
condition of I'-limit groups.

THEOREM 2.20. — [37] Let T’ be a torsion-free hyperbolic group and
(G;)ien a sequence of T'-limit groups. If (f; : G; = G,41)ien Is a sequence
of epimorphisms, then all but finitely many of them are isomorphisms.

As it was indicated in the introduction, a JSJ-decomposition of a group
G over a class of subgroups C relative to a subgroup H is a splitting of
G over C relative to H, which describes in certain sense all other possible
splittings of G over C relative to H. Guirardel and Levitt have developed
in [10, 11] a general framework of JSJ-decompositions that we will use to
give the definition and the principal properties.

Given a group G and two (C, H)-splittings A; and Ay of G, we say that
A1 dominates As if every subgroup of G which is elliptic in A is also elliptic
in As. A (C, H)-splitting of G is said to be universally elliptic if all edge
stabilizers in A are elliptic in any other (C, H)-splitting of G.

A JSJ-decomposition of G over C relative to H is an universally elliptic
(C, H)-splitting dominating all other universally elliptic (C, H)-splittings.
If C is the class of abelian subgroups, then we simply say abelian JSJ-
decomposition; similarly when C is the class of cyclic subgroups.

It is shown in [10, 11] that JSJ-decompositions exist for finitely presented
groups. Here we will use existence and properties of JSJ decompositions in
the framework of finitely generated torsion-free CSA-groups proved in [11].

Given a surface ¥, a boundary subgroup of the fundamental group m (X)
is a subgroup conjugate to the fundamental group of a boundary compo-
nent. An extended boundary subgroup of 71(X) is a subgroup of a boundary
subgroup.
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Let G be a group and A a (C, H)-splitting of G. A vertex stabilizer G,
in A is called of QH surface type if it is isomorphic to the fundamental
group 71(X) of a surface ¥ such that images of incident edge groups are
extended boundary subgroups and every conjugate of H intersects G, in
an extended boundary subgroup. A boundary component C of ¥ is used if
there exists an incident edge group, or a subgroup of GG, conjugate to H
whose image in 1 (X) is contained with finite index in 71 (X).

A vertex stabilizer G, in A is said to be rigid if it is elliptic in every
(C, H)-splitting of G. Otherwise it is called flexible.

Recall that a group is called CSA if every maximal abelian subgroup is
malnormal. It is a general fact that if I is a torsion-free hyperbolic group
then I'-limit groups are torsion-free and CSA. The following theorem is an
application of results of [11] in our particular context.

THEOREM 2.21 ([11, Theorem 11.1]). — Let G be a torsion-free finitely
generated CSA-group and H a subgroup of G such that G is H-freely
indecomposable. Then abelian JSJ-decompositions of G relative to H exist
and their nonabelian flexible vertices are of QH surface type with every
boundary component used.

Since boundary subgroups are cyclic, it follows that if H is nonabelian
then H is contained in a conjugate of a rigid group in any abelian JSJ-
decomposition of G relative to H. Hence, without loss of generality, in the
rest of this paper we may assume that JSJ-decompositions used by us have
the property that H is contained in a rigid vertex group. Since, we will use
only properties that are satisfied by all JSJ-decompositions, by misuse of
language we will use the term the JSJ-decomposition rather than a JSJ-
decomposition. Through this paper we will use the following two simple
properties of JSJ-decompositions.

LEMMA 2.22. — Let G be a finitely generated torsion-free CSA-group
and H a nonabelian subgroup of G such that G is H-freely indecomposable.
Let A be the abelian JSJ-decomposition of G relative to H. Then any
automorphism from Mod(G/H) fixes pointwise the vertex group containing
H in A.

Proof. — Let G(H) be the vertex group of A containing H. Since G(H)
is rigid it is elliptic in any abelian splitting of G relative to H. Let o €
Mod(G/H). Suppose that ¢ is a Dehn twist and let G = G; *¢ G2 or
G = Lx¢ be the corresponding one-edge abelian splitting. Since H < G;
or H < L and H < G(H) which is elliptic, it follows that G(H) < G; or
G(H) < L which is the desired conclusion. Using a similar argument, if
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o is an automorphism of surface type or abelian type then it fixes G(H)
pointwise. O

LEMMA 2.23. — Let G be a finitely generated torsion-free CSA-group
and H a nonabelian subgroup of G such that G is H-freely indecomposable.
Let f = (fn : G — T')pen be a stable sequence of pairwise distinct homo-
morphisms with trivial stable kernel and which bounds H in the limit. For
each n € N choose o, € Mod(G/H) such that f, o oy is short. Let SG be
the corresponding shortening quotient and w : G — SG the natural map.
Then the restriction of w to the vertex group G(H) containing H in the
abelian JSJ-decomposition of G relative to H is injective.

Proof. — By Lemma 2.22, for every g € G(H), fno0o,(9) = fn(g) and
the required conclusion follows. O

All the previous properties of JSJ-decompositions are widely sufficient in
our context of I'-limit groups. However for torsion-free hyperbolic groups
themselves, we need some additional properties. Let G be a group and A
a (C, H)-splitting of G. We say that a boundary subgroup B of a surface
type vertex group G, is fully used if there exists an incident edge group,
or a subgroup of G, conjugate to H, which coincides with B.

Let A be an abelian splitting of G (relative to H) and G, be a ver-
tex group of A. The elliptic abelian neighborhood of G, is the subgroup
generated by the elliptic elements that commute with nontrivial elements
of G,. By [5, Proposition 4.26] if G is commutative transitive then any
abelian splitting A of G (relative to H) can be transformed to an abelian
splitting A’ of G such that the underlying graph is the same as that of
A and for any vertex v, the corresponding new vertex group G, in A’ is
the elliptic abelian neighborhood of G,, (similarly for edges). In particular
any edge group of A’ is malnormal in the adjacent vertex groups and any
boundary subgroup of a surface type vertex group is fully used. We call
that transformation the malnormalization of A. If A is a (cyclic or abelian)
JSJ-decomposition of G and G is commutative transitive then the malnor-
malization of A will be called a malnormal JSJ-decomposition. If G, is a
rigid vertex group then we call G, also rigid; similarly for abelian and sur-
face type vertex groups. Strictly speaking a malnormal JSJ-decomposition
is not a JSJ-decomposition in the sense of [10], however it shares the most
important properties with JSJ-decompositions that we need. Hence we get
the following which summarizes several properties sufficient for our pur-
pose.
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THEOREM 2.24. — Let G be a torsion-free finitely generated CSA-group
and H a nonabelian subgroup of G such that G is H-freely indecomposable.
Then malnormal abelian JSJ-decompositions of G relative to H exist and
satisfy the following properties.

(1) Flexible vertices are of QH surface type with every boundary com-
ponent fully used.

(2) Every edge group is maximal abelian in its endpoints vertex groups.

(3) H is contained in a rigid vertex group.

We end with the definition of generalized JSJ-decomposition. First, split
I' as a free product I' = I'y % 'y, where H < I'y and I'y is freely H-
indecomposable (relative Grushko-Kurosh decomposition). Then, define
the generalized (cyclic) JSJ-decomposition of I" relative to H as the (cyclic)
splitting obtained by adding I's as a new vertex group to the (cyclic) JSJ-
decomposition of 'y (relative to H). The notion of a generalized malnormal
(cyclic) JSJ-decomposition is defined in a similar way.

Recall that a group is said to be equationally noetherian if any system
of equations in finitely many variables is equivalent to a finite subsytem.
For more details on this notion, we refer the reader to [2]. A theorem of
Sela [37, Theorem 1.22] states that any system of equations without pa-
rameters in finitely many variables is equivalent in a torsion-free hyperbolic
group to a finite subsystem. The previous property is equivalent, when the
group under consideration G is finitely generated, to the fact that G is
equationally noetherian (for more details see the end of section 2 in [25]).
Hence a torsion-free hyperbolic group is equationally noetherian. This was
generalized by C. Reinfeldt and R. Weidmann [29] to general hyperbolic
groups.

THEOREM 2.25 ([29]). — A hyperbolic group is equationally noetherian.

3. Constructibility from the algebraic closure

As noticed before, if A is a subset of T then acl(A) and acl((A)) coincide,
similarly with the other notions of closures, thus without loss of generality
we may assume that A is always a subgroup. First we treat the case of
abelian subgroups. We denote by C(A) the centralizer of A in G.

LEMMA 3.1. — Let G be a torsion-free CSA group whose abelian sub-

groups are cyclic. Let A be a nontrivial abelian subgroup of G. Then
racl(A) = acl(A) = acl(A) = dcl?(A) = dcl(A) = rdcl(A) = Cg(A).
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Proof. — We first show that racl(A) < Cg(A). Let g € racl(A), a € A,
g # 1, a # 1. Let m, be the conjugation by a™, n € N. Hence the set
{mn(g)In € N} is finite. Thus [a""™,g] = 1 for some n,m € N, n # m.
Since G is torsion-free and CSA, commutativity is a transitive relation on
the set of nontrivial elements, thus [g,a] = 1. Therefore ¢ € Cg(A) as
required.

Now we show that Cg(A) < del?(A). Since Cg(A) is cyclic, there exists
b € G such that Cg(A) = (b). Let a € A, a # 1 and m € Z such that
b™ = a. Therefore b satisfies the equation ™ = a. Since G is torsion-free
and commutative transitive, b is the unique element satisfying =z = a.
Hence b € dcl?(A) and thus Cg(A) < del?(A) as required. We conclude by
the inclusions given by Lemma 2.2. O

Since torsion-free hyperbolic groups are CSA, the previous lemma holds
for them. Also note that if G is nonabelian then the algebraic closure of
the trivial element is trivial. Indeed by taking a,b € G with [a,b] # 1 we
have acl(1) < acl({a)) Nacl({b)) = 1.

Recall that an L-subtructure N of an L-structure M is said to be exis-
tentially closed, abreviated e.c., if for any existential formula ¢ with param-
eters from N, if M = ¢, then N = . To avoid repeating some proofs, we
introduce the following weak notion of existential closedness, of indepen-
dent interest. A subset A of an L-structure is said to be finitely existentially
closed if acl?(A) = A. For instance a nontrivial centralizer in a torsion-free
hyperbolic group is finitely existentially closed (Lemma 3.1 above). It fol-
lows immediately that a finitely existentially closed subset is in fact an
L-substructure, so in in the particular context of groups it is a subgroup.
The first aim of this section is a proof of next theorem. First we give a
definition.

DEFINITION 3.2. — Let G be a group, A a subgroup and C a class of
subgroups. By induction on n, define Dy = {A}, D41 = D,, U {Bj *¢ Ba,
B¢ |B1,B € D,,By < G,C € C}. We say that G is constructible from A
over C, if there exists n € N such that G € D,,.

THEOREM 3.3. — Let I' be a torsion-free hyperbolic group and A a non-
abelian finitely existentially closed subgroup of I'. Then T" is constructible
from A over cyclic subgroups. In particular A is finitely generated, quasi-
convex (and hyperbolic).

Since for any subset A, acl(A) is finitely existentially closed (Lem-
ma 2.2(3)), Theorem 3.3 implies Theorem 1.1. It is shown in [26] that,
given a torsion-free hyperbolic group I, if A is an elementary subgroup
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then I' has a structure of a hyperbolic tower over A and in particular A
is finitely generated, quasiconvex and hyperbolic. Theorem 3.3 allows to
deduce these last properties which generalize to existentially closed sub-
groups, too. Indeed, since an existentially closed subgroup is in particular
finitely existentially closed, we obtain the following.

COROLLARY 3.4. — An existentially closed subgroup of a torsion-free
hyperbolic group is finitely generated, quasiconvex (and hyperbolic).

The first part of this section is devoted to the proof of Theorem 3.3. We
start with the following lemma of general interest.

LEMMA 3.5. — Let G be an equationally noetherian group. Let G* be
an elementary extension of G. Let P be a subset of G. Let K be a finitely
generated subgroup of G* such that P C K. Then there exists a finite
subset Py C P such that for any homomorphism f : K — G*, if f fixes Py
pointwise then f fixes P pointwise.

Proof. — Let g be a generating tuple of K. Write P = {p;|i € N}. Then
for every i € N there exists a word w;(Z) such that p; = w;(g). Since G is
equationally noetherian and P C G, there exists n € N such that

(1) G EVE((po =wo(Z) A+ Apn = wn(Z)) = pi = wi(T)),
for any 7 € N.

Let Py = {po,...,pn} and let f : K — G* be a homomorphism such
that f(p;) = p; for every 0 < i < n. Therefore p; = f(p;) = w;(f(g)) for

any 0 < ¢ < n. Hence, by (1), p; = w;(f(g)) for any ¢ € N, thus p; = f(p;)
for any ¢ € N, as required. O

PRrROPOSITION 3.6. — Let I' be a torsion-free hyperbolic group and A a
nonabelian finitely existentially closed subgroup of I'. Let I'* be a nonprin-
cipal ultrapower of I'. Let K < I'* be a finitely generated subgroup such
that A < K and such that K is A-freely indecomposable. Then one of the
following cases holds.

(1) Let A be the abelian JSJ-decomposition of K relative to A. Then
the vertex group containing A in A is exactly A.
(2) There exists a finitely generated subgroup L < I'* such that A < L
and a non-injective epimorphism f : K — L satisfying:
(i) f sends A to A pointwise;
(#¢) if A is the abelian JSJ-decomposition of K relative to A, then
the restriction of f to the vertex group containing A in A is
injective.
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Proof. — Let d = (di,...,d,) be a finite generating tuple of K. Let
z = (x1,...,%p) be a new tuple of variables and set

S(@) = {w(@)|K |z w(d) = 1},
where w(z) denotes a word on = and their inverses.
Since I is equationally noetherian and I'* is an elementary extension of
T, there exist words wy(Z), ..., wn(Z) from S(Z), such that

I EVEwi(Z) = 1A Awn(Z) =1 = w(@) = 1),

for any w € S(Z).
By Lemma 3.5, there exists a finite subset Py = {p1,...,pq} C A, such
that for any homomorphism f : K — T, if f fixes P, pointwise then f fixes

A pointwise. Let p1(Z), ..., pq(Z) be words such that p;(d) = p; for every
1 <i<q. Set

HZ) i =wi (@) =1A - Awp(T) =1Ap1(Z) =p1 A Apg(T) = py-

We conclude that any map f : K — I satisfying I' = ¢(f(d)) extends to
a homomorphism which fixes A pointwise, that we still denote f.

Let (vi(#)]i € N) be the list of reduced words such that K = v;(d) # 1.
For m € N, we set

om(T) = ¢(T) A /\ vi(Z) # 1.

0<i<m

Suppose first that there exists m € N, such that for any map f: K — T
for which T' = ¢, (f(d)), f is an embedding. We claim that, in that case,
the vertex group B containing A in the abelian JSJ-decomposition of K
relative to A is exactly A. Thus we obtain conclusion (1) of the proposition.

Let b be a finite generating tuple of B. Then there exists a tuple of words

w(z) such that b = w(d). We claim that the formula
P() = F2(pm(z) Ay = w(T)),
has only finitely many realizations in I'.

Let ¢ in T" such that ' = ¢(¢). Hence there exists an embedding f : K —
I, fixing pointwise A, such that & = w(f(b)). Thus the subgroup generated
by ¢ is the image of B by f.

By Theorem 2.16, there exist finitely many embeddings hq, ..., hg, fixing
A pointwise, such that for any embedding h : K — I, there exists a
modular automorphism 7 € Mod(I'/A) such that h o7 = h;. Since any
modular automorphism fixes B pointwise (Lemma 2.22), we find ¢ = f(b) €
{hy(b), ..., hy(b)}, thus we get the required conclusion. Since T'* |= 1(b),
we conclude that B < acl?(A) = A as claimed.
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Suppose now that for every m € N, there exists a non-injective homo-
morphism f : K — T such that T |= ¢,,(f(d)). Therefore, we get a stable
sequence (fp, : K — T')en of pairwise distinct homomorphisms with triv-
ial stable kernel.

For each n € N, choose a modular automorphism 7,, € Mod(K|A) such
that h,, = f, o7, is short relative to A. Hence, we extract a stable sub-
sequence (h,, : K — T'),en of pairwise distinct homomorphisms. Let L
be the corresponding shortening quotient, which is embeddable in *I" and
contains A and let f : K — L be the quotient map. By Theorem 2.19 L
is a proper quotient. We see also that f sends A to A pointwise. Since the
stable kernel of (f,, : K — T') is trivial and since every modular automor-
phism fixes B pointwise, the restriction of f to B is injective (Lemma 2.23).
Hence we obtain conclusion (2) of the proposition. This ends the proof of
the proposition. O

COROLLARY 3.7. — Let I' be a torsion-free hyperbolic group and A a
nonabelian finitely existentially closed subgroup of I'. Let I'* be a non-
principal ultrapower of I'. Let K < I'* be a finitely generated subgroup
containing A. Then K is constructible from A over abelian subgroups.

Proof. — We construct a sequence K = Ky, K1, ..., K, of finitely gen-
erated subgroups of I'*, with epimorphisms f; : K; — K;;1 satisfying:

(i) f; sends A to A pointwise,

(ii) either K;14 is a free factor of K; and f; is just the retraction that
kills the complement, or the restriction of f to the vertex group
containing A in the abelian JSJ-decomposition of K; relative to A
is injective,

(7i7) if A is the abelian JSJ-decomposition of K,,, then the vertex group
containing A in A is exactly A.

We put Ky = K. Suppose that K; is constructed. If K; is freely decom-
posable relative to A, then we set K; = K; 11 x H with A < K;;1 and K; 1
freely A-indecomposable. We define f; : K; — K;;1 to be the retraction
that kills H.

If K; is freely A-indecomposable, then one of the cases of Proposition 3.6
is fulfilled. If (1) of Proposition 3.6 holds, then this terminates the construc-
tion of the sequence. Otherwise, (2) of Proposition 3.6 holds and we get
K11 <T* and f; : K; — K41 satisfying (2)(4)-(4¢) of Proposition 3.6.

Using the descending chain condition on I'-limit groups (Theorem 2.20),
the sequence terminates. Let K, be the last element in the sequence. Hence,
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property (i) is satisfied. We show by inverse induction on 4, that K; sat-
isfies the conclusion of the corollary. Since A is exactly the vertex group
containing A in the abelian JSJ-decomposition of K, relative to A, it fol-
lows that K, can be constructed from A by a sequence of amalgamated free
products and HNN-extensions along abelian subgroups. Hence K,, satisfies
the conclusion of the corollary.

Suppose that K1 satisfies the conclusions of the corollary. By construc-
tion, either K; = K;,1 * H, in which case K; satisfies the conclusion of the
corollary, or the restriction f; to the vertex group V containing acl(A) in
the abelian JSJ-decomposition of K; relative to A is injective. By induction,
K; satisfies the conclusions of the corollary. Since f;(V') contains A and f;
sends A to A pointwise, f;(V) is constructible from A by a sequence of amal-
gamated free products and HNN-extensions along abelian subgroups. Since
the restriction of f; to V' is injective, it follows that V itself is constructible
from A by a sequence of free products and HNN-extensions along abelian
subgroups. Therefore K; satisfies the conclusion of the corollary. Hence K
is constructible from A by a sequence of amalgamated free products and
HNN-extensions along abelian subgroups; thus the corollary is proved. [

Following [20], a subgroup A of a free group F' is compressed if whenever
A < K, with K finitely generated, then rk(A) < rk(K); here rk(H) denotes
the rank of H.

COROLLARY 3.8. — Let F' be a free group of finite rank and A a non-
abelian subgroup of F'. Then acl(A) is compressed.

Proof. — By Corollary 3.7 if acl(A) < K, with K finitely generated, then
K is constructible from acl(A) over cyclic subgroups. Let K = By *¢ Bs
with acl(A) < By and C = (c¢). By [24, Theorem 1.1], ¢ is either primitive
in By or Bs. Therefore rk(B;) < rk(K) for ¢ = 1,2. Similarly, if K =
Bx¢ then rk(B) < rk(K); a consequence of [24, Theorem 1.1]. Hence, by
induction we get that rk(acl(A)) < rk(K). O

Proof of Theorem 3.3. — The fact that I' is constructible from A over
cyclic subgroups follows from Corollary 3.7. Since I' is finitely generated,
any vertex group in any cyclic splitting of I is finitely generated. Thus by
induction and using the fact that I' is constructible from A over cyclic sub-
groups we find that A is finitely generated. The same argument combined
with the following theorem shows that A is quasiconvex and in particular
hyperbolic. O

THEOREM 3.9 ([14, Proposition 4.5]). — Let " be a hyperbolic group.
Suppose that A is a cyclic splitting of I' with a finite underlying graph.
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Then all vertex groups of A are quasiconvex in I' and word-hyperbolic
themselves.

Note that in general acl?(A) is not finitely existentially closed, thus The-
orem 3.3 cannot be applied to existential algebraic closure. The rest of this
section is devoted to show that free groups of finite rank are constructible
from the existential algebraic closure.

THEOREM 3.10. — Let F be a free group of finite rank and A a non-
abelian subgroup of T'. Let K be a finitely generated subgroup of F' contain-
ing acl?(A). Then K is constructible from acl?(A) over cyclic subgroups.

First we prove the following general key proposition of independent in-
terest.

PropPOSITION 3.11. — Let G be a finitely generated equationally noe-
therian group and let A be a subgroup of G. Let K < G be finitely generated
and suppose that acl?(A) is a proper subgroup of K. Then there exists a
stable sequence of pairwise distinct homomorphisms (hy, : K — G)pen with
trivial stable kernel and which bounds acl?(A) in the limit.

In what follows we fix a finitely generated equationally noetherian group
G and A a subgroup of G. We fix a finite generating set of G and we denote
by B, the ball of radius r with respect to the word distance induced by the
fixed generating set. We denote by Mon(G/A) the monoid of monomor-
phisms of G fixing A pointwise. We introduce the following definition.

DEFINITION 3.12. — Let G* be an elementary extension of G and let C'
be a finitely generated subgroup of G*. A stable sequence (fy, : C — G)pnen
with trivial stable kernel strongly converges to C' if it satisfies the following
properties:

(1) for any c € C NG, f,(c) = c for all but finitely many n;
(2) for any ¢ € C, for any b € G, if f,, (c) = b for some subsequence
(nk)ken, then ¢ = 0.

LEMMA 3.13. — Let G* be an elementary extension of G and let C' < G*
be finitely generated. Then there exists a stable sequence of homomor-
phisms (f,, : C = G)nen strongly converging to C.

Proof. — Let
C={c,...,ctjwi(¢) =1,i € N)
be a presentation of C. Since G is equationally noetherian, there exists a
finite number of words wy, ..., w, such that

GEVYZ(wo(Z)=1A-ANwp(Z) =1) = wi(T) =1)
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for any ¢ € N.
Enumerate the following sets:

G~ A1} = (a4)ien,
(GNC) A1} = (bi)ien = (bi(€))ien

and
O~ A1} = (vi(€))iens

and
C N G = (di(€))ien-

Since G is an elementary subgroup of G*, for any n > 0 there exists ¢,
in G such that

(3.1) GE /\ w; () = 1A /\ vi(Cn) # 1

0<i<p 0<i<n
and
(3.2) GE N bi=biE)rn N di(en)#a;
o<isn 0<i<n,0<j<n

Define f,,(¢) = ¢, and we show that the sequence (f,,)nen satisfies prop-
erties (1) and (2) of Definition 3.12.

The sequence (fy,)nen is stable and has a trivial stable kernel by equa-
tion (3.1). Let g € C N G. Then there exists m such that g = b,,, = b,,(C).
By equation (3.2), we have f,, (b (¢)) = by (¢n) = by, for any n > m; thus
fn(g) = g for all but finitely many n, so we have property (1).

Now, let g € C and b € G such that there exists a subsequence (ng)ren
with fp,(g) = b for any k > 0. Let s be such that b = as. Suppose for a
contradiction that g ¢ G. Then there exists r such that g = d,(¢). Let n >
max{r, s}. By equation (3.2), we have f,(g) = fn(d-(¢)) = d,(Cn) # as.
Therefore for ny large enough we have f,, (g) # b; a contradiction.

Hence g € G and in particular ¢ € C N G. By property (1) we get
fn(g) = g for all but finitely many n and in particular g = b as required,

so property (2) is proved. a
LEMMA 3.14. — The following properties are equivalent for any finite
subset C' C G':

(1) C C acl?(A);
(2) there exists a finite subset B(C') C G such that for any elementary
extension G* of G and for any f € Mon(G*/A), f(C) C B(C);
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(3) there exists r > 0 such that for any elementary extension G* of G,
for any f € Mon(G*/A), for any sequence (g, : f(G) = G)nen
which strongly converges to f(G), (gn o f)(C) C B, for all but
finitely many n.

Proof.
(1) = (2). This follows immediately from the definition of acl(A).
(2) = (3). Let B(C') be the given subset. Let

r = max{|g\ ;g€ B(C)}7

where |.| is the word length with respect to the finite generating set of G.
Let G < G*,let f € Mon(G*/A) and let (g, : f(G) = G)nen be a sequence
strongly converging to f(G). Let ¢ € C. Hence f(¢) =b € B(C) C G and
be GN f(G). Since (gn)nen strongly converges to f(G), we have g,(b) = b
for all but finitely many n. Therefore g,,(f(¢)) = b for all but finitely many
n. Since C' is finite, we get (g, o f)(C) C B, for all but finitely many n.

(3) = (2). Let c€ C. Let G = G* and f € Mon(G*/A). We claim that
f(c) € By, so we can take B(C') = B,. Let (g, : f(G) = G)nen be a se-
quence strongly converging to f(G); its existence is assured by Lemma 3.13.
So, there exists b € B, such that g,,(f(c)) = b for some subsequence
(nk)ken. Therefore, by property (2) of Definition 3.12, we have f(c¢) = b.
Hence f(C) C B, as claimed.

(2) = (1). We suppose that (1) does not hold and we show that (2) does
not hold. Let ¢ € C'\acl?(A). Then, any existential formula ¢(x) € tp?(c/A)
has infinitely many realizations. Define the theory T'(d) = Diage(G) U
{o(d),d # gi;¢ € tp?(c/A),i € N}, where (g;)ien is an enumeration of
the elements of G. As T'(d) is finitely consistent, there exists an elementary
extension G < G’ such that G’ = T(d), d € G'\G and tp>(c/A) C tp?(d/A).
By Proposition 2.3 (2) there exist an elementary extension G’ < G* and
f € Mon(G*/A) such that f(c) = d. Hence (2) is not true and this ends
the proof. a

Proof of Proposition 3.11. — Let D be a finite generating set of K.
Since acl?(A) < K we have D ¢ acl®(A). Hence, using the equivalence of
points (1) and (3) of Lemma 3.14, we have:

() For any r > 0 there exist an elementary extension G* of G, a mono-
morphism f € Mon(G*/A) and a sequence (g, : f(G) = G)nen
strongly converging to f(G), such that maxgep |(gnof)(d)| = r for
some subsequence (ny)gen.
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Write K \ {1} as an increasing sequence of finite subsets (C;);en. Enu-
merate the elements of acl?(A): acl?(A) = (b;)ien. Let B, be the ball
witnessing point (3) of Lemma 3.14 for b;.

CLAIM 3.15. — For any m € N there exists a homomorphism h,, : K —
G satisfying the following properties:
(1) 1€ hm(Cn);
(2) maxgep |hm(d)| = m;
(3) hm(bi) C By for 0 <i < m.

Proof. — Let m € N. Let f € Mon(G*/A) and let (g5, : f(G) = G)nen
be the sequence witnessing (x) for m. Since (g, : f(G) = G)nen strongly
converges to f(G) we have

1 ¢ (gn o f)(Cm)

for all but finitely many n.
Since b; € acl?(A), by the equivalence of points (1) and (3) of Lemma 3.14
we have for any 0 < i < m,

(gn o £)(bi) € B,

for all but finitely many n.
So, by taking nj large enough, we obtain:

(1) 1 ¢ (gny, © f)(Cm);
(2) maxaep |(gn, © f)(d)] = m;
(3) (gny, o f)(bi) € By for 0 <i < m.
Let hy, = gn,, o f | K. Then h,, is the desired homomorphism and this
ends the proof of the Claim. g

By point (2) of the above claim and finiteness of balls of finite radius, we
can extract a subsequence (A, Jnen of pairwise distinct homomorphisms.
Thus, we may assume that the initial sequence consists of pairwise distinct
homomorphisms. We are left to show that the sequence (h,, : K = G)men
satisfies the required properties. By point (1) of Claim 3.15, the sequence
is stable and has a trivial stable kernel. Let b € acl?(A). Then there exists
p such that b = b,. Hence for any m > p we have hy,(b) € B, (), thus the
sequence bounds acl?(A) in the limit. Therefore, the sequence satisfies all
the required properties, so this ends the proof. O

To prove Theorem 3.10 we need the following result of Takahasi.

PROPOSITION 3.16. — [38] Let F' be a free group of finite rank and let
(L;|i € N) be a descending chain of subgroups with bounded rank. Then
(; L; is a free factor of L,, for all but finitely many n.
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Proof of Theorem 3.10. — Define a descending sequence (L;|i € N) of
subgroups of I with bounded rank and containing acl>(A) as follows. Let
Lo = K. Suppose that L; is defined. If L; = acl®(A) then this termi-
nates the sequence; put L; = L; for any j > i. If L; is freely acl®(A)-
decomposable, then set L;,1 to be the free factor of L; containing acl®(A)
and which is freely acl?(A)-indecomposable. So, suppose that acl(A) < L;
and L; is freely acl?(A)-indecomposable. By Proposition 3.11 there exists
a stable sequence of pairwise distinct homomorphisms (h,, : L; — F)pen
with trivial stable kernel and which bounds acl(A) in the limit. Hence
by Theorem 2.9, L; admits a nontrivial cyclic splitting relative to acl?(A).
Then, set L;;; to be the vertex group containing acl?(A).

We claim that the sequence terminates. Suppose for a contradiction that
it does not terminate. Then we get an infinite sequence (L;|i € N) such
that:

(i) acl?(A) < L;,
(#3) rk(L;) < rk(K) (properties of free groups, this can be proved us-
ing [24] as in Corollary 3.8),

(’LZZ) Li+1 < L;.

By Proposition 3.16, (), L; is a free factor of L; for all but finitely many
n. Hence, for all but finitely many n, L, is freely decomposable with re-
spect to acl?(A); a contradiction with the construction of the sequence.
Therefore the sequence terminates, as claimed. Let L, be the last term in
the sequence. Then by construction acl?(A) = L,. We conclude that K is
constructible from acl?(A4). O

As in the case of the algebraic closure, as a consequence we have the
following result:

COROLLARY 3.17. — Let F' be a free group of finite rank and A a non-
abelian subgroup of F. Then acl?(A) is compressed.

Proof. — The proof is identical to that of Corollary 3.8 by using Theo-
rem 3.10 instead of Theorem 3.3. g

4. The algebraic closure in the JSJ-decomposition

In this section we study the link between the algebraic closure and the
JSJ-decomposition and we prove Theorem 1.2. We start with the following
lemma.
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LEMMA 4.1. — Let G be a torsion-free CSA group whose abelian sub-
groups are cyclic. Suppose that G = G1xG9 with A < G1. Then raclg(A) <
raclg, (4).

Proof. — We show first that raclg(A) < Gy. We suppose that ¢ € G
and we find a sequence (f,, )nen in Aut(G/A) such that the orbit {f,,(g);n €
N} is infinite; this will prove that g & racl(A). Depending whether G5 is
abelian or not, we will treat the two cases separately. First suppose that
G5 is abelian. Then G5 is cyclic; let t be a generating element. Let o € Gy
be nontrivial. Then, let (f,)nen be the sequence of automorphisms of G
defined by being the identity on G; and sending t to a™t. Since g € G1, g
has a normal form g¢t*°g; - - - ¢, g,4+1 where g; € G1,¢; = £l andifg; =1
then g; + e;41 # 0. If f,(9) = fin(g) with n # m then a calculation with
normal forms shows that o™~ = 1 which is a contradiction with torsion-
freeness of G. Hence the orbit {f,(¢g);n € N} is infinite, as required.

Suppose now that G is nonabelian. Since g ¢ G1, g has a normal form

—m

g=g1---gr, 7 = 2. Let g; € G appear in the normal form of ¢g. Since G is
nonabelian and CSA, there exists an element « € Ga such that [g;, o] # 1.
Then, let (f,,)nen be the sequence of automorphisms of G defined by being
identity on G; and conjugation by a™ on Ga. If f,,(g) = fi(g) with n # m,
then a calculation with normal forms shows that [o"~™, g;] = 1 which is
a contradiction, as G is commutative transitive and [g;, o] # 1. Hence the
orbit {f.(g);n € N} is infinite, as required.

Now we show that raclg(A) < raclg, (A). Let b € raclg(A) and sup-
pose that b & raclg, (A). Then the orbit {f(b)|f € Aut(G1/A)} is infinite;
since each element of Aut(G;/A) has a natural extension to G, the orbit
{f()|f € Aut(G/A)} is also infinite, which is a contradiction. O

LEMMA 4.2. — Let T" be a torsion-free hyperbolic group and A a non-
abelian subgroup of I'. Suppose that I' = T'y « 'y with A < Ty and 'y is
freely A-indecomposable. Then raclr(A) = raclr, (A).

Proof. — By Lemma 4.1, we have raclr(A) < raclr, (A); thus it remains
to show that raclr, (A) < raclp(A).

Let f € Aut(G/A). We claim that f [ T'y € Aut(T'1/A). By Grushko-
Kurosh theorem, f(I') has a decomposition

FO) =T AF(Ty) %« TP A FT) T A F(Ty) 5 xThe A f(Ty) * F,

where F' is a free group. Since A < f(I'1) we have g; = 1 for some ¢ and
A <T1Nf(T) and this last group is a free factor of f(I'1). Since I'; is freely
A-indecomposable, we conclude that T'y N f(T'y) = f(T'y), thus f(T';) < T;.
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If f | 'y is not an automorphism, then by Corollary 2.17, I'y is freely
A-decomposable, which is a contradiction. Hence f [ 'y € Aut(T'1/A), as
claimed.

Therefore, if the orbit {f(b)|f € Aut(I'1/A)} is finite then the orbit
{f(b)|f € Aut(T'/A)} is finite as well, which proves raclr,(A) <racip(4). O

PRrROPOSITION 4.3. — Let G be a torsion-free CSA group and A a sub-
group of G. Let A be an abelian splitting of G relative to A and suppose
that each edge group is nontrivial and maximal abelian in its endpoints ver-
tex groups. If G(A) is the vertex group containing A then racl(A) < G(A)
and in particular acl(A) < G(A).

Proof. — As in the proof fo Lemma 4.1, we are going to show that if
g € G(A) then there exists a sequence (f,)nen in Aut(G/A) such that
the orbit {f.(g);n € N} is infinite; which proves that g & racl(A). Let
g ¢ G(A).

Write A = (G(V, E), T, ¢). To simplify, identify G with n(G(V, E),T).
Enumerate the edges which lie outside T" as ey, ..., ep. Let G;(V, E;) be the
graph of groups obtained by deleting e;. Hence G is an HNN-extension of
the fundamental group G; = 7(G;(V, E;), T).

Suppose that g € G;. Write G = (G;,t|C* = »(C)). Let ¢ € C be
nontrivial. In this case let (f,;)nen be the sequence of Dehn twists around
c", that is f, is defined by being identity on G; and sending ¢ to c"t.
As in the previous lemma, g has a normal form got*°g; ... gt gry1; if
fnlg) = fm(g), with n # m, we find ¢"™™ = 1, a contradiction with
torsion-freeness of G. This shows that the orbit {f,(g);n € N} is infinite,
as required.

Suppose that g € NigicpGi. Note that Ni¢;<pGi is the fundamental
group L of the graph of groups G(V, E’) obtained by deleting all the edges
ei,...,ep, relative to the maximal subtree T. Let €], ..., e; be the edges
incident to G(A) in T. Hence, for each 1 < ¢ < ¢, L can be written as
an amalgamated free product L = L;; *¢, Lio where L;; and L;y are the
fundamental groups of the connected components of the graph obtained by
deleting e} and G(A) < Ly.

Since g € G(A), there exists 1 < i < g such that g € L;;. We claim that
there exists a sequence (fy,)nen in Aut(L/A) such that the orbit { f,,(¢g);n €
N} is infinite and such that the restriction of each f,, on any edge group of
our initial graph of groups G(V, E) is a conjugation by an element of L.

Define the sequence (f,)nen similarly as in the previous case of HNN-
extensions and in Lemma 4.1 above. Since g ¢ L;1, g has a normal form
g=g1---gr 1 = 2. Let g; € L;5 appear in the normal form of g. Let ¢ € C}
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be nontrivial. In this case let ( f,,)nen be the sequence of Dehn twists around
c"; that is f, is defined by being identity on L;; and conjugation by ¢™ on
Lio. If f,,(9) = fm(g) with n # m, then a calculation with normal forms
shows that [¢"~™, ¢;] = 1, thus [g;, ¢] = 1. Since C; is maximal abelian, we
get g; € Cy; a contradiction. Hence the orbit { f,,(¢);n € N} is infinite and
the restriction of each f,, on each edge group of G(V, E) is a conjugation
by an element of L, as required.

Each f, has a standard extension fn to G; thus the sequence ( fn)neN
is a sequence from Aut(G/A) with the orbit {f,(g);n € N} infinite, as
required. O

PrOPOSITION 4.4. — Let I' be a torsion-free hyperbolic group and let
A be a nonabelian subgroup of T'. Then racl(A) coincides with the vertex
group containing A in the generalized malnormal cyclic JSJ-decomposition
of I relative to A.

Proof. — WriteI' = 'y «I'y with A < T'; and I'; freely A-indecomposable.
By Lemma 4.1, raclp(A) = raclr, (A); thus we must show that raclr, (A) is
the vertex group containing A in the cyclic malnormal JSJ-decomposition
of T'; relative to A. Let G(A) be the vertex group containing A.

By Theorem 2.16, there exists a finite number of automorphisms f1, ..., f;
of Ty such that for any f € Aut(I'y/A), there exists a modular automor-
phism o € Mod(T'1/A) such that f = f; o o for some i.

Let b € G(A). By Lemma 2.22 any automorphism o € Mod(I';/A)
fixes the vertex group containing A in the JSJ-decomposition of I'; rel-
ative to A. We see that this last property is steal true for the vertex group
G(A). Since any 0 € Mod(I';/A) fixes G(A) pointwise for any automor-
phism f € Aut(I'y/A) we have f(b) € {f1(D),..., fi(b)}. Thus b € aclr, (4)
and G(A) < aclr,(A). The inverse inclusion follows from Proposition 4.3
and properties of the malnormal JSJ-decompositions stated in Theo-
rem 2.24. g

In the case of free groups, we have a bit more.

THEOREM 4.5. — Let F be a free group of finite rank and let A be a
nonabelian subgroup of F. Then acl(A) coincides with the vertex group
containing A in the generalized malnormal cyclic JSJ-decomposition of F
relative to A.

Proof. — Write F' = Fy+Fy with A < F and F freely A-indecomposable.
Since Fy < F, aclp, (A) = aclp(A). Let G(A) be the vertex group con-
taining A in the cyclic malnormal JSJ-decomposition of Fj relative to A.
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By Proposition 4.3 and properties of JSJ-decompositions stated in Theo-
rem 2.24, we have acl(A) < G(A); thus it remains to show that G(A) <
acl(A). Let ¢ € G(A) and let (di,ds) be a tuple generating F; with d;
generating G(A). Then ¢ = w(d;) for some word w.

By Theorem 3.3 acl(A) is finitely generated; let b be a finite generating
set of acl(A). Let ¢(Z,y) be the formula given by the Proposition 2.4 with
respect to the generating tuple (czl, Jg) and to the tuple b; that is for any
endomorphism f of Fy, if Fy = o(f(d1), f(d2)) and f fixes b then f is an
automorphism.

By equational noetherianity, there exists a finite system S(z,y) of equa-
tions such that for any (a, 8) if F} = S(&, /) then the map which sends
(dy,ds) to (a, B) extends to an homomorphism.

Let ©(Z) be a tuple of words such that b = o(d,).

Let
Y(2,0) := 323y(0(Z,9) Az = w(xT) A S(Z,5) Ab = v(x)).

We claim that ¥(z, B) has only finitely many realizations in Fj. Indeed,
if
Fy |=¢(c,b) »= 323y ((2,9) A ! = w(z) A S(Z,9) Ab=0(x)),
then there exists an automorphism f fixing acl(A) pointwise and send-
ing ¢ to ¢’. By Proposition 4.4 G(A) = racl(A), thus the set {f(c)|f €

Aut(F;/A)} is finite. Hence 1(2,b) has only finitely many realizations as
claimed. Thus ¢ € acl(acl(A)) = acl(A) as required. O

5. The algebraic closure & the definable closure

Putting all the pieces together, in this section we are ready to give the
relation between algebraic closure and definable closure.

THEOREM 5.1. — Let F be a free group of finite rank and A a non-
abelian subgroup of F. Then dcl(A) is a free factor of acl(A). Similarly,
dcl?(A) is a free factor of acl?(A).

We need the following theorem of Dyer and Scott.

THEOREM 5.2 ([18, Proposition 5.3, Ch I)[7]). — Let F be a free group
of finite rank and let f be an automorphism of F of finite order. Then the
set of elements of F' fixed by f is a free factor of F.
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Proof of Theorem 5.1. — By Theorem 3.3, acl(A) is finitely generated.
Hence, by Grushko-Kurosh theorem, acl(A) has a free decomposition K x L,
such that K contains dcl(A) and K is freely del(A)-indecomposable. We
claim that K = dcl(A). Suppose for a contradiction that dcl(A) < K and
let a € K\ dcl(A).

CLAIM 5.3. — There exists an automorphism h of acl(A), of finite order
and fixing pointwise dcl(A), such that h(a) # a.

Proof. — Since a € acl(A) \ dcl(A), there exists a formula ¢(z), with
parameters from A, such that ¢(F) is finite, contains a and is not a sin-
gleton. We claim that there exists b € acl(A) such that tp(a|A) = tp(b|A)
and a # b. Set ¢(F) = {a,by,...,b,} and suppose towards a contradiction
that tp(a|A) # tp(b;|A) for all 1 <4 < m. Thus, for every 1 < i < m, there
exists a formula ;(x), with parameters from A, such that ; € tp(b;|A)
and —; € tp(a|A). Thus the formula ¢ (z) A —th1(x) A - - - A=y, (x) defines
a; a contradiction.

Hence, let b € ¢)(F') such that a # b and tp(a|A) = tp(b|A). By Proposi-
tion 2.3, there exist an elementary extension F* of F and f € Aut(F*/A)
such that f(a) = b. Let h be the restriction of f to acl(A). We claim that
h has the required properties.

Since h is restriction of f, we get h(acl(A)) < acl(A). Let b € acl(A)
and let ¢p(z) be a formula, with parameters from A, such that ¢, (F) is
finite and contains b. Then h(¢y(F)) < p(F) and since i, (F) is finite
and h is injective we get h(vy(F)) = ¢p(F). Thus h is surjective and in
particular h is an automorphism of acl(A). Moreover, since for any n, h"
is an automorphism of acl(A) and h™(y(F)) = ¥p(F), there exists n € N
such that h™ fixes ¥, (F') pointwise.

Let {b1,...,b,} be a finite generating set of acl(A). Hence, we get
N1,...,MNy, such that A" (b;) = b;. Therefore h™""m (z) = x for any x €
acl(A), thus h has finite order. This completes the proof of the claim. O

Let h be the automorphism given by the above claim. We claim that
h(K) = K. We have h(K) < acl(A) and by Grushko-Kurosh theorem

h(K)=h(K)NK9 %---xh(K)N K9 « h(K)NL" % - ..« h(K) N L"™ x D,

where D is a free group. Since dcl(A) < K N h(K), it follows that g; = 1
for some 4. Since K is dcl(A)-freely indecomposable, we find that h(K) =
h(K) N K, thus h(K) < K. In particular h(a) € K.

If h(K) < K, then K is freely dcl(A)-decomposable by Corollary 2.17; a
contradiction. Hence h(K) = K.
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Since h is a nontrivial automorphism of K of finite order, by Theorem 5.2
K is freely dcl(A)-decomposable; a contradiction. Hence in each case we
get a contradiction. Therefore dcl(A) = K as required.

Concerning the existential closure, the proof follows the same method.
We only give a sketch of it by detailing the points where the proof is
different. As above, by Theorem 3.10 instead of Theorem 3.3, acl®(A) is
finitely generated; hence we get a free decomposition acl®(A) = K x* L,
with del?(A) < K and K is freely dcl®(A)-indecomposable. We let a €
K \ dcl?(A). As before, we also have the following.

CLAIM 5.4. — There exists an automorphism h of acl®(A), of finite
order and fixing dcl?(A) pointwise, such that h(a) # a.

Proof. — The unique point, where the proof here is different, is the
use of monomorphisms of an elementary extension rather than automor-
phisms. Since a € acl?(A) \ dcl(A), there exists an existential formula
¥(x), with parameters from A, such that ¢ (F) is finite, contains a and
is not a singleton. The claim here is that there exists b € acl?(A) such
that tp=(a|A) C tp?(b|A) and a # b. The details are similar and left to
the reader. Then, by Proposition 2.3, there exists a monomorphism of an
elementary extension F™* of F fixing dcl?(A) pointwise such that f(a) = b.
Let h be the restriction of f to acl?(A). The rest of the proof works exactly
as in Claim 5.3 and is left to the reader. g

Also the remaining claims work as in the previous case. This ends the
proof of the theorem. O

Next theorem is a detailed version of Theorem 1.4. We denote by
End(F/A) the set of endomorphisms of F' fixing A pointwise.

THEOREM 5.5. — Let Ay be a finite set (possibly empty) and
A= (Ag,a,b,ul), H=Ax(yl),
v = aybyay ‘by~ ', F = (H,tlu' = v).
Then F is a free group of rank | Ag|+4 and the following properties hold.
(1) If f € End(F/A) then f € Aut(F|A), and if f | H # idy then

fly) =y~
(2) acl(A) = acl?(A) = H.
(3) del(A) = dclP(A) = A.

Proof. — Clearly F is a free group of rank |Ag| + 4. We suppose (1) and
we show (2) and (3). Clearly we have

A < acl®(A) < acl(A) < racl(A),
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and since the subgroups generated by w and v respectively are malnormal
in H, by Proposition 4.3 we have racl(4) < H. Thus to show (2) it is
sufficient to show that y € acl®(A). Let

©(2) == Ja(u® = azbzaz"'bz1).

Then F = ¢(y). Let v € F such that F' = (7). Then the map defined
by f(y) =+, f(t) = « and identity on A extends to an endomorphism of
F fixing A pointwise; thus, by (1), v = y*!. Hence ¢(z) has only finitely
many realizations, thus y € acl?(A) as desired.

We show (3). We have

A < delP(A) < del(A) < rdel(A) < racl(A) < H,

thus to show (3) it is sufficient to show that there exists g € Aut(F/A)
such that for any v € H\ A we have g(vy) # 7. Let g defined on H by being
identity on A and g(y) = y~*. Then

g(v) = ay~ by rayby = ay by raybyay by Hay by ™) T = dud T,
where d = ay~'by~'. Hence by extending ¢ on F by
g(t) =td™",

we get g € Aut(F/A) with g(y) = y~!. Now if v € H \ A then y appears
in the normal form of v, thus g() # ~ as required.

The remaining is devoted to the proof of (1).

CLAM 5.6. — Let f € End(F/A). Then f(y) € H.

Proof. — Suppose towards a contradiction that f(y) ¢ H and let
(5.1) fly) = apt®™ ...t anq1

in normal form where o; € H and e; = %1 for every i.
By definition of v and by HNN relation we have

(5.2) FO T uf(t) = af(ybf(y)af(y) " of ()~
Substituting definition (5.1) in equation (5.2), we have
(5.3) ()" uf(t)
= aapt®™ ... aptt a1 1bagtte . L an+1aa;}r1t*5" a;l ...

—e0,—1p—1 4—epn . —1 —€0,,—1
00 T bag, ot a0
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Compare a cyclically reduced conjugate for each side of (5.3): u for the left
side, and a cyclically reduced conjugate c of

-1

(5.4) ao_laozoteo QT 1Dt L B an+1aa;4l_1t_5"an

g by Lt

for the right side.
There are three subwords in ¢ that could be subject to cancellation.

(1) One is ayq1aa;;;.
Note that
e it does not belong to (u), since two centralizers of generators
cannot be conjugate of each other;
e it does not belong to (v}, since this would imply anﬂaa;il =
vP (as v is root-free), and vP is cyclically reduced, while a
cyclically conjugate of anﬂaa;il is a.
(2) The other two subwords are a,41bag and ag 'bay, ;.
If the first one is in (u), the second
e cannot be in (u), because their product an+1b2a;j_1 should be
in (u), but it is not, since it is equal to b? in the Abelianization
e cannot be in (v), because their product a,41b%a;; should
have the form wPv?, that in the Abelianization is equal to
uP(ab?)4, but, as said above, it is b2.
Symmetrically, if the first one is in (v}, the second
e cannot be in (v), because their product a,,41b%a;, |, should be
in (v), but it is not, since it is equal to b? which is different
from a?b? = v in the Abelianization.
e cannot be in (u), because their product an+1b2a;}r1 should
have the form v?uP, that in the Abelianization is equal to
uP(a?b?)4, but, as said above, it is b2.

So, suppose a,+1bayg is in (u) or in (v), so that we can reduce between the
first and the second occurrence of f(y).
We have the following two cases:

(1) the reduction procedure stops somewhere, and we are done, since
we have some occurrences of ¢ remaining, at least among the first
two occurrences of f(y), getting in this way a contradiction (recall
that the HNN length of the cyclically reduced conjugate of the left
side of the equation (5.3) is 0);
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(2) the procedure goes on until every ¢ in the first two occurrences of
f(y) is cancelled, and we remain with the word

-1

_ -1 -1 ,— _ _
Wbty abaoy, Lt e Lt

aalaaodanﬂaa;_}_lt*s"a "
where d € (u) U (v).

This is cyclically reduced, because o 1aa0dan+1aa;_~1_1 =a
or a?(a?b?)4 in the Abelianization, so the above expression neither
belongs to (u) nor to (v). Thus, also in this case we get a contra-

diction, since we cannot cancel the remaining occurrences of ¢.

Qup

Symmetrically, if o 'bay, | belongs to (u) U (v), then at least the occur-
rences of ¢ in the first two occurrences of f(y) remain, so we get a contra-
diction as well.

Thus, we can now say that | f(y)|yyy = 0, so Claim 5.6 is proved. [

CLAM 5.7. — f(t) ¢ H.

Proof. — Suppose that f(t) = k € H and let h = f(y). Then, from the
equation f(t)"luf(t) = f(v) we have k~luk = ahbhah~*bh~!, an equation
in H that in the Abelianization H/[H, H] becomes u = a?b?, which is not
true, so Claim 5.7 is proved. O

To prove next claim, we need the following lemma.

LEMMA 5.8 ([25]). — Let G = (H,t|U" = V) where U and V are cyclic
subgroups of G generated respectively by u and v. Suppose that:

() U and V are malnormal in H.

(i) UhNV =1 for any h € H.
Let o, 8 € H, s € G such that o® = 3, |s| > 1. Then one of the following
cases holds:

(1) a=uP?, f=0vP°, s =~ 5, where p € Z and ~,0 € H.

(2) a=vPY, B=uP’, s =~ 't"1§, where p € Z and ~,6 € H.

CLAM 5.9. — There exists a, 3 € A such that f(y) = ay®S where

€ ==1.

Proof. — Since f(t) ¢ H and f(v) € H, by the above lemma f(v) is
conjugate to v in H.

First of all, f(y) ¢ A. Indeed, if f(y) € A then f(v) € A which cannot
be H-conjugate to v.

Let

f(y) =h= hoyEO e hnyE" h'n,—',—la
where ¢ = £1 and h; € A; moreover, if h; = 1 then y®i—1y% £ 1.
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We obtain that v is a H-conjugate of

a(hoy®® ... iyt hi11)b(hoy®® ... by hiy1)
a(hoyeo . hlyelhprl)_lb((hoygo e hlyalhl+1))_1.

By a similar argument to Claim 5.6, we get that the unique possibility is
that n = 0. g

CLAamM 5.10. — f € Aut(F/A).
Proof. — Immediate from the above lemma and Claim 5.9. O
CLAIM 5.11. — FEither f | H = idy or f(y) =y~ L.

Proof. — By Claim 5.9 and Lemma 5.8, we know that f conjugates v in
H and f(y) = ay®f, where ¢ = £1. Therefore, by comparison of cyclically
reduced words, the word

aybyay ™~ by~

is a cyclic permutation of the word
a taayt fbaytfaflyfabp Ty E.
In both cases € = +1 and € = —1, this yields the equations
e o laa=a
e Bba=1b
e fafl=a
o o b7 =b.
From the first and the third equations, @ and § commute with a; so a = a?
and 8 = af.
From the second equation, we have p = ¢ = 0.
Therefore, if ¢ = 41, then f [ H is the identity, while, if ¢ = —1, then
f(y) = y~1. So this last claim and Theorem 5.5 are proved. O
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