Soit un nombre premier. Nous classifions les représentations lisses irréductibles modulo du groupe unitaire non-ramifié en deux variables. Ensuite, nous étudions les paramètres de Langlands en caractéristique associés à et proposons une correspondance entre certaines classes d’équivalence de paramètres de Langlands et certaines classes d’isomorphisme de -paquets semi-simples de .
Let be a prime number. We classify all smooth irreducible mod- representations of the unramified unitary group in two variables. We then investigate Langlands parameters in characteristic associated to , and propose a correspondence between certain equivalence classes of Langlands parameters and certain isomorphism classes of semisimple -packets on .
Révisé le :
Accepté le :
Publié le :
Keywords: Supersingular representations, unitary group, mod-$p$ representations
Mot clés : Représentations supersingulières, groupe unitaire, représentations modulo $p$
Kozioł, Karol 1
@article{AIF_2016__66_4_1545_0, author = {Kozio{\l}, Karol}, title = {A {Classification} of the {Irreducible} mod-$p$ {Representations} of $\textnormal{U}(1,1)(\mathbb{Q}_{p^2}/\mathbb{Q}_p)$}, journal = {Annales de l'Institut Fourier}, pages = {1545--1582}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {4}, year = {2016}, doi = {10.5802/aif.3043}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3043/} }
TY - JOUR AU - Kozioł, Karol TI - A Classification of the Irreducible mod-$p$ Representations of $\textnormal{U}(1,1)(\mathbb{Q}_{p^2}/\mathbb{Q}_p)$ JO - Annales de l'Institut Fourier PY - 2016 SP - 1545 EP - 1582 VL - 66 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3043/ DO - 10.5802/aif.3043 LA - en ID - AIF_2016__66_4_1545_0 ER -
%0 Journal Article %A Kozioł, Karol %T A Classification of the Irreducible mod-$p$ Representations of $\textnormal{U}(1,1)(\mathbb{Q}_{p^2}/\mathbb{Q}_p)$ %J Annales de l'Institut Fourier %D 2016 %P 1545-1582 %V 66 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3043/ %R 10.5802/aif.3043 %G en %F AIF_2016__66_4_1545_0
Kozioł, Karol. A Classification of the Irreducible mod-$p$ Representations of $\textnormal{U}(1,1)(\mathbb{Q}_{p^2}/\mathbb{Q}_p)$. Annales de l'Institut Fourier, Tome 66 (2016) no. 4, pp. 1545-1582. doi : 10.5802/aif.3043. https://aif.centre-mersenne.org/articles/10.5802/aif.3043/
[1] Autour des répresentations modulo des groupes réductifs -adiques de rang 1, Université Paris-Sud XI (France) (2011) (Ph. D. Thesis)
[2] Induction parabolique modulo pour les groupes -adiques quasi-déployés de rang 1 (2013) (Preprint, available at http://perso.ens-lyon.fr/ramla.abdellatif/Articles/rang1.pdf)
[3] Classification des représentations modulo de , Bull. Soc. Math. France, Volume 142 (2014) no. 3, pp. 537-589
[4] A classification of irreducible admissible mod representations of -adic reductive groups (2014) (Preprint, available at http://www.math.toronto.edu/~herzig/classification-apr9.pdf)
[5] Irreducible modular representations of of a local field, Duke Math. J., Volume 75 (1994) no. 2, pp. 261-292 | DOI
[6] Modular representations of of a local field: the ordinary, unramified case, J. Number Theory, Volume 55 (1995) no. 1, pp. 1-27 | DOI
[7] Families of Galois representations and Selmer groups, Astérisque (2009) no. 324, xii+314 pages
[8] Central characters for smooth irreducible modular representations of , Rend. Semin. Mat. Univ. Padova, Volume 128 (2012), p. 1-6 (2013) | DOI
[9] Automorphic -functions, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Proc. Sympos. Pure Math., XXXIII), Amer. Math. Soc., Providence, R.I., 1979, pp. 27-61
[10] Sur quelques représentations modulaires et -adiques de . I, Compositio Math., Volume 138 (2003) no. 2, pp. 165-188 | DOI
[11] Sur quelques représentations modulaires et -adiques de . II, J. Inst. Math. Jussieu, Volume 2 (2003) no. 1, pp. 23-58 | DOI
[12] Invariant et série spéciale -adique, Ann. Sci. École Norm. Sup. (4), Volume 37 (2004) no. 4, pp. 559-610 | DOI
[13] Representations of Galois and in characteristic (2007) (Notes for a course given at Columbia University, available at http://www.math.u-psud.fr/~breuil/PUBLICATIONS/New-York.pdf)
[14] The conjectural connections between automorphic representations and Galois representations (2013) (Proceedings of the LMS Durham Symposium 2011)
[15] Extending representations of to with discrete , J. Korean Math. Soc., Volume 43 (2006) no. 1, pp. 29-43 | DOI
[16] Représentations de et -modules, Astérisque (2010) no. 330, pp. 281-509
[17] Local-global compatibility in the -adic Langlands programme for (2010) (Preprint, available at http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf)
[18] The Fontaine-Mazur conjecture for , J. Amer. Math. Soc., Volume 22 (2009) no. 3, pp. 641-690 | DOI
[19] Deformations of and representations, Astérisque (2010) no. 330, pp. 511-528
[20] Hecke modules and supersingular representations of , Represent. Theory, Volume 19 (2015), pp. 56-93 | DOI
[21] -indistinguishability for , Canad. J. Math., Volume 31 (1979) no. 4, pp. 726-785 | DOI
[22] Unramified representations of unitary groups, On the stabilization of the trace formula (Stab. Trace Formula Shimura Var. Arith. Appl.), Volume 1, Int. Press, Somerville, MA, 2011, pp. 389-410
[23] Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 322, Springer-Verlag, Berlin, 1999, xviii+571 pages (Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder) | DOI
[24] The image of Colmez’s Montreal functor, Publ. Math. Inst. Hautes Études Sci., Volume 118 (2013), pp. 1-191 | DOI
[25] Automorphic representations of unitary groups in three variables, Annals of Mathematics Studies, 123, Princeton University Press, Princeton, NJ, 1990, xii+259 pages
[26] Analytic expression for the number of points mod , The zeta functions of Picard modular surfaces, Univ. Montréal, Montreal, QC, 1992, pp. 65-109
[27] Corps locaux, Hermann, Paris, 1968, 245 pages (Deuxième édition, Publications de l’Université de Nancago, No. VIII)
[28] Modular forms of weight one and Galois representations, Algebraic number fields: -functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 193-268
[29] Représentations -modulaires d’un groupe réductif -adique avec , Progress in Mathematics, 137, Birkhäuser Boston, Inc., Boston, MA, 1996, xviii and 233 pages
[30] À propos d’une conjecture de Langlands modulaire, Finite reductive groups (Luminy, 1994) (Progr. Math.), Volume 141, Birkhäuser Boston, Boston, MA, 1997, pp. 415-452
[31] Pro--Iwahori Hecke ring and supersingular -representations, Math. Ann., Volume 331 (2005) no. 3, pp. 523-556 | DOI
[32] The right adjoint of the parabolic induction (2013) (Preprint, available at http://webusers.imj-prg.fr/~marie-france.vigneras/ordinaryfunctor2013oct.pdf)
[33] The pro--Iwahori Hecke algebra of a reductive -adic group I (2014) (To appear in Compos. Math., Preprint available at http://webusers.imj-prg.fr/~marie-france.vigneras/rv2013-18-07.pdf)
Cité par Sources :