On donne une condition suffisante pour l’annulation de la cohomologie en degré supérieur à , des complexes simpliciaux hyperboliques uniformément contractiles. Comme application, on obtient une minoration de la dimension conforme du bord à l’infini de certains groupes hyperboliques.
We establish a sufficient condition for vanishing of the -cohomology of hyperbolic uniformly contractible simplicial complexes, in degree at least . As an application, a geometric lower bound for the conformal dimension of the boundary at infinity of some hyperbolic groups, is obtained.
Révisé le :
Accepté le :
Publié le :
Mot clés : cohomologie $\ell _p$, dimension conforme, espaces hyperboliques
Keywords: $\ell _p$-cohomology, conformal dimension, hyperbolic spaces
Bourdon, Marc 1
@article{AIF_2016__66_3_1013_0, author = {Bourdon, Marc}, title = {Cohomologie $\ell _p$ en degr\'es sup\'erieurs et dimension conforme}, journal = {Annales de l'Institut Fourier}, pages = {1013--1043}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {3}, year = {2016}, doi = {10.5802/aif.3030}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3030/} }
TY - JOUR AU - Bourdon, Marc TI - Cohomologie $\ell _p$ en degrés supérieurs et dimension conforme JO - Annales de l'Institut Fourier PY - 2016 SP - 1013 EP - 1043 VL - 66 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3030/ DO - 10.5802/aif.3030 LA - fr ID - AIF_2016__66_3_1013_0 ER -
%0 Journal Article %A Bourdon, Marc %T Cohomologie $\ell _p$ en degrés supérieurs et dimension conforme %J Annales de l'Institut Fourier %D 2016 %P 1013-1043 %V 66 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3030/ %R 10.5802/aif.3030 %G fr %F AIF_2016__66_3_1013_0
Bourdon, Marc. Cohomologie $\ell _p$ en degrés supérieurs et dimension conforme. Annales de l'Institut Fourier, Tome 66 (2016) no. 3, pp. 1013-1043. doi : 10.5802/aif.3030. https://aif.centre-mersenne.org/articles/10.5802/aif.3030/
[1] Plongements lipschitziens dans , Bull. Soc. Math. France, Volume 111 (1983) no. 4, pp. 429-448
[2] The boundary of negatively curved groups, J. Amer. Math. Soc., Volume 4 (1991) no. 3, pp. 469-481 | DOI
[3] Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal., Volume 10 (2000) no. 2, pp. 266-306 | DOI
[4] Uniformizing Gromov hyperbolic spaces, Astérisque (2001) no. 270, viii+99 pages
[5] Rigidity for quasi-Möbius group actions, J. Differential Geom., Volume 61 (2002) no. 1, pp. 81-106 http://projecteuclid.org/euclid.jdg/1090351321
[6] Structure conforme au bord et flot géodésique d’un -espace, Enseign. Math. (2), Volume 41 (1995) no. 1-2, pp. 63-102
[7] Cohomologie et produits amalgamés, Geom. Dedicata, Volume 107 (2004), pp. 85-98 | DOI
[8] Cohomologie et actions isométriques propres sur les espaces , Geometry, Topology, and Dynamics in Negative Curvature (2016) (à paraître)
[9] Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups, Groups Geom. Dyn., Volume 7 (2013) no. 1, pp. 39-107 | DOI
[10] Some applications of -cohomology to boundaries of Gromov hyperbolic spaces, Groups Geom. Dyn., Volume 9 (2015) no. 2, pp. 435-478 | DOI
[11] Cohomologie et espaces de Besov, J. Reine Angew. Math., Volume 558 (2003), pp. 85-108 | DOI
[12] Notes on notes of Thurston, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) (London Math. Soc. Lecture Note Ser.), Volume 111, Cambridge Univ. Press, Cambridge, 1987, pp. 3-92
[13] Conformal dimension and canonical splittings of hyperbolic groups, Geom. Funct. Anal., Volume 24 (2014) no. 3, pp. 922-945 | DOI
[14] Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov, Pacific J. Math., Volume 159 (1993) no. 2, pp. 241-270 http://projecteuclid.org/euclid.pjm/1102634263
[15] de Rham-Hodge theory for -cohomology of infinite coverings, Topology, Volume 16 (1977) no. 2, pp. 157-165
[16] On the differential form spectrum of negatively curved Riemannian manifolds, Amer. J. Math., Volume 106 (1984) no. 1, pp. 169-185 | DOI
[17] The -cohomology and the conformal dimension of hyperbolic cones, Geom. Dedicata, Volume 68 (1997) no. 3, pp. 263-279 | DOI
[18] Coarse cohomology and -cohomology, -Theory, Volume 13 (1998) no. 1, pp. 1-22 | DOI
[19] Isoperimetric functions of groups and exotic cohomology, Combinatorial and geometric group theory (Edinburgh, 1993) (London Math. Soc. Lecture Note Ser.), Volume 204, Cambridge Univ. Press, Cambridge, 1995, pp. 87-104
[20] Hyperbolic groups, Essays in group theory (Math. Sci. Res. Inst. Publ.), Volume 8, Springer, New York, 1987, pp. 75-263 | DOI
[21] Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) (London Math. Soc. Lecture Note Ser.), Volume 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1-295
[22] Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001, x+140 pages | DOI
[23] Spaces and groups with conformal dimension greater than one, Duke Math. J., Volume 153 (2010) no. 2, pp. 211-227 | DOI
[24] Conformal dimension, University Lecture Series, 54, American Mathematical Society, Providence, RI, 2010, xiv+143 pages (Theory and application) | DOI
[25] Kleinian groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 287, Springer-Verlag, Berlin, 1988, xiv+326 pages
[26] Cohomologie , espaces homogènes et pincement Preprint Université Paris-Sud (1999)
[27] Cohomologie des variétés à courbure négative, cas du degré , Rend. Sem. Mat. Univ. Politec. Torino (1989) no. Special Issue, p. 95-120 (1990) Conference on Partial Differential Equations and Geometry (Torino, 1988)
[28] Cohomologie en degré 1 des espaces homogènes, Potential Anal., Volume 27 (2007) no. 2, pp. 151-165 | DOI
[29] Cohomologie et pincement, Comment. Math. Helv., Volume 83 (2008) no. 2, pp. 327-357 | DOI
[30] Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. (2), Volume 54 (1996) no. 1, pp. 50-74 | DOI
[31] Functional analysis, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973, xiii+397 pages (McGraw-Hill Series in Higher Mathematics)
[32] Geometric integration theory, Princeton University Press, Princeton, N. J., 1957, xv+387 pages
Cité par Sources :