The main result is that for a connected hyperbolic complete Kähler manifold with bounded geometry of order two and exactly one end, either the first compactly supported cohomology with values in the structure sheaf vanishes or the manifold admits a proper holomorphic mapping onto a Riemann surface.
Le résultat principal est que pour une variété kählérienne complète hyperbolique connexe à géométrie bornée d’ordre deux qui a exactement un bout, soit la première cohomologie à valeurs dans le faisceau structural s’annule, ou alors la variété admet une application propre holomorphe dans une surface de Riemann.
Revised:
Accepted:
Published online:
Keywords: Green’s function, pluriharmonic
@article{AIF_2016__66_1_239_0, author = {Napier, Terrence and Ramachandran, Mohan}, title = {The {Bochner{\textendash}Hartogs} dichotomy for bounded geometry hyperbolic {K\"ahler} manifolds}, journal = {Annales de l'Institut Fourier}, pages = {239--270}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {1}, year = {2016}, doi = {10.5802/aif.3011}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3011/} }
TY - JOUR TI - The Bochner–Hartogs dichotomy for bounded geometry hyperbolic Kähler manifolds JO - Annales de l'Institut Fourier PY - 2016 DA - 2016/// SP - 239 EP - 270 VL - 66 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3011/ UR - https://doi.org/10.5802/aif.3011 DO - 10.5802/aif.3011 LA - en ID - AIF_2016__66_1_239_0 ER -
Napier, Terrence; Ramachandran, Mohan. The Bochner–Hartogs dichotomy for bounded geometry hyperbolic Kähler manifolds. Annales de l'Institut Fourier, Volume 66 (2016) no. 1, pp. 239-270. doi : 10.5802/aif.3011. https://aif.centre-mersenne.org/articles/10.5802/aif.3011/
[1] Fundamental groups of compact Kähler manifolds, Mathematical Surveys and Monographs, Tome 44, American Mathematical Society, Providence, RI, 1996, xii+140 pages | DOI
[2] Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Études Sci. Publ. Math. (1965) no. 25, pp. 81-130
[3] On the fundamental group of a compact Kähler manifold, Duke Math. J., Tome 68 (1992) no. 3, pp. 477-488 | DOI
[4] Analytic and meromorphic continuation by means of Green’s formula, Ann. of Math. (2), Tome 44 (1943), pp. 652-673
[5] Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. Soc. Math. France, Tome 122 (1994) no. 2, pp. 255-284
[6] Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math., Tome 28 (1975) no. 3, pp. 333-354
[7] Sur les fonctions triplement périodiques de deux variables, Acta Math., Tome 33 (1910) no. 1, pp. 105-232 | DOI
[8] Cuts in Kähler groups, Infinite groups: geometric, combinatorial and dynamical aspects (Progr. Math.) Tome 248, Birkhäuser, Basel, 2005, pp. 31-55 | DOI
[9] Estimations pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4), Tome 15 (1982) no. 3, pp. 457-511
[10] Topological methods in group theory, Graduate Texts in Mathematics, Tome 243, Springer, New York, 2008, xiv+473 pages | DOI
[11] Function-theoretic degeneracy criteria for Riemannian manifolds, Pacific J. Math., Tome 28 (1969), pp. 351-356
[12] Kählersche Mannigfaltigkeiten mit hyper--konvexem Rand, Problems in analysis (Lectures Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969), Princeton Univ. Press, Princeton, N.J., 1970, pp. 61-79
[13] Sur le groupe fondamental d’une variété kählérienne, C. R. Acad. Sci. Paris Sér. I Math., Tome 308 (1989) no. 3, pp. 67-70
[14] Kähler hyperbolicity and -Hodge theory, J. Differential Geom., Tome 33 (1991) no. 1, pp. 263-292 http://projecteuclid.org/euclid.jdg/1214446039
[15] Harmonic maps into singular spaces and -adic superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math. (1992) no. 76, pp. 165-246
[16] Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Math. Ann., Tome 62 (1906) no. 1, pp. 1-88 | DOI
[17] On boundaries of complex analytic varieties. I, Ann. of Math. (2), Tome 102 (1975) no. 2, pp. 223-290
[18] Relative ends and duality groups, J. Pure Appl. Algebra, Tome 61 (1989) no. 2, pp. 197-210 | DOI
[19] On the structure of complete Kähler manifolds with nonnegative curvature near infinity, Invent. Math., Tome 99 (1990) no. 3, pp. 579-600 | DOI
[20] Green potential of Evans type of Royden’s compactification of a Riemann surface, Nagoya Math. J., Tome 24 (1964), pp. 205-239
[21] Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems, Geom. Funct. Anal., Tome 5 (1995) no. 5, pp. 809-851 | DOI
[22] The Bochner-Hartogs dichotomy for weakly -complete Kähler manifolds, Ann. Inst. Fourier (Grenoble), Tome 47 (1997) no. 5, pp. 1345-1365
[23] The -method, weak Lefschetz theorems, and the topology of Kähler manifolds, J. Amer. Math. Soc., Tome 11 (1998) no. 2, pp. 375-396 | DOI
[24] Hyperbolic Kähler manifolds and proper holomorphic mappings to Riemann surfaces, Geom. Funct. Anal., Tome 11 (2001) no. 2, pp. 382-406 | DOI
[25] Filtered ends, proper holomorphic mappings of Kähler manifolds to Riemann surfaces, and Kähler groups, Geom. Funct. Anal., Tome 17 (2008) no. 5, pp. 1621-1654 | DOI
[26] Castelnuovo-de Franchis, the cup product lemma, and filtered ends of Kähler manifolds, J. Topol. Anal., Tome 1 (2009) no. 1, pp. 29-64 | DOI
[27] A Bochner-Hartogs type theorem for coverings of compact Kähler manifolds, Comm. Anal. Geom., Tome 4 (1996) no. 3, pp. 333-337
[28] Classification theory of Riemann surfaces, Die Grundlehren der mathematischen Wissenschaften, Band 164, Springer-Verlag, New York-Berlin, 1970, xx+446 pages
[29] Maximale holomorphe und meromorphe Abbildungen. I, Amer. J. Math., Tome 85 (1963), pp. 298-315
[30] Growth of positive harmonic functions and Kleinian group limit sets of zero planar measure and Hausdorff dimension two, Geometry Symposium, Utrecht 1980 (Utrecht, 1980) (Lecture Notes in Math.) Tome 894, Springer, Berlin-New York, 1981, pp. 127-144
[31] Continuity of intersection of analytic sets, Ann. Polon. Math., Tome 42 (1983), pp. 387-393
Cited by Sources: