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THE BOCHNER–HARTOGS DICHOTOMY FOR
BOUNDED GEOMETRY HYPERBOLIC KÄHLER

MANIFOLDS

by Terrence NAPIER & Mohan RAMACHANDRAN (*)

Abstract. — The main result is that for a connected hyperbolic complete
Kähler manifold with bounded geometry of order two and exactly one end, ei-
ther the first compactly supported cohomology with values in the structure sheaf
vanishes or the manifold admits a proper holomorphic mapping onto a Riemann
surface.
Résumé. — Le résultat principal est que pour une variété kählérienne complète

hyperbolique connexe à géométrie bornée d’ordre deux qui a exactement un bout,
soit la première cohomologie à valeurs dans le faisceau structural s’annule, ou alors
la variété admet une application propre holomorphe dans une surface de Riemann.

Introduction

Let (X, g) be a connected noncompact complete Kähler manifold. Ac-
cording to [13], [19], [14], [15], [21], [8], [25], and [26], if X has at least three
filtered ends relative to the universal covering (i.e., ẽ(X) > 3 in the sense
of Definition 5.1) and X is weakly 1-complete (i.e., X admits a continuous
plurisubharmonic exhaustion function) or X is regular hyperbolic (i.e., X
admits a positive symmetric Green’s function that vanishes at infinity) or
X has bounded geometry of order two (see Definition 2.1), then X admits
a proper holomorphic mapping onto a Riemann surface. In particular, if X
has at least three (standard) ends (i.e., e(X) > 3) and X satisfies one of the
above three conditions, then such a mapping exists. Cousin’s example [7] of
a 2-ended weakly 1-complete covering of an Abelian variety that has only

Keywords: Green’s function, pluriharmonic.
Math. classification: 32E40.
(*) The authors would like to thank the referee for providing very valuable comments.
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constant holomorphic functions demonstrates that two (filtered) ends do
not suffice.
A noncompact complex manifold X for which H1

c (X,O) = 0 is said to
have the Bochner–Hartogs property (see Hartogs [16], Bochner [4], and
Harvey and Lawson [17]). Equivalently, for every C∞ compactly supported
form α of type (0, 1) with ∂̄α = 0 on X, there is a C∞ compactly supported
function β on X such that ∂̄β = α. If X has the Bochner–Hartogs prop-
erty, then every holomorphic function on a neighborhood of infinity with no
relatively compact connected components extends to a holomorphic func-
tion on X. For cutting off away from infinity, one gets a C∞ function λ

on X. Taking α ≡ ∂̄λ and forming β as above, one then gets the desired
extension λ − β. In particular, e(X) = 1, since for a complex manifold
with multiple ends, there exists a locally constant function on a neighbor-
hood of ∞ that is equal to 1 along one end and 0 along the other ends,
and such a function cannot extend holomorphically. Thus in a sense, the
space H1

c (X,O) is a function-theoretic approximation of the set of (topo-
logical) ends of X. An open Riemann surface S, as well as any complex
manifold admitting a proper holomorphic mapping onto S, cannot have
the Bochner–Hartogs property, because S admits meromorphic functions
with finitely many poles. Examples of manifolds of dimension n having
the Bochner–Hartogs property include strongly (n − 1)-complete complex
manifolds (Andreotti and Vesentini [2]) and strongly hyper-(n− 1)-convex
Kähler manifolds (Grauert and Riemenschneider [12]). We will say that the
Bochner–Hartogs dichotomy holds for a class of connected complex mani-
folds if each element either has the Bochner–Hartogs property or admits a
proper holomorphic mapping onto a Riemann surface.
According to [27], [22], and [24], the Bochner–Hartogs dichotomy holds

for the class of weakly 1-complete or regular hyperbolic complete Kähler
manifolds with exactly one end. The main goal of this paper is the following:

Theorem 0.1. — Let X be a connected noncompact hyperbolic com-
plete Kähler manifold with bounded geometry of order two, and assume
that X has exactly one end. Then X admits a proper holomorphic mapping
onto a Riemann surface if and only if H1

c (X,O) 6= 0.

In other words, the Bochner–Hartogs dichotomy holds for the class of hy-
perbolic connected noncompact complete Kähler manifolds with bounded
geometry of order two and exactly one end. When combined with the earlier
results, the above gives the following:
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Corollary 0.2. — LetX be a connected noncompact complete Kähler
manifold that has exactly one end (or has at least three filtered ends) and
satisfies at least one of the following:

(i) X is weakly 1-complete;
(ii) X is regular hyperbolic; or
(iii) X is hyperbolic and of bounded geometry of order two.

Then X admits a proper holomorphic mapping onto a Riemann surface if
and only if H1

c (X,O) 6= 0.

In particular, since connected coverings of compact Kähler manifolds
have bounded geometry of all orders, we have the following (cf. [3], [27],
and Theorem 0.2 of [24]):

Corollary 0.3. — Let X be a compact Kähler manifold, and X̂ → X

a connected infinite covering that is hyperbolic and has exactly one end (or
at least three filtered ends). Then X̂ admits a proper holomorphic mapping
onto a Riemann surface if and only if H1

c (X̂,O) 6= 0.

A standard method for constructing a proper holomorphic mapping onto
a Riemann surface is to produce suitable linearly independent holomor-
phic 1-forms (usually as holomorphic differentials of pluriharmonic func-
tions), and to then apply versions of Gromov’s cup product lemma and the
Castelnuovo–de Franchis theorem. In this context, an irregular hyperbolic
manifold has a surprising advantage over a regular hyperbolic manifold
in that an irregular hyperbolic complete Kähler manifold with bounded
geometry of order two automatically admits a nonconstant positive pluri-
harmonic function. In particular, the proof of Theorem 0.1 in the irregular
hyperbolic case is, in a sense, simpler than the proof in the regular hy-
perbolic case (which appeared in [24]). Because the existence of irregular
hyperbolic complete Kähler manifolds with one end and bounded geometry
of order two is not completely obvious, a 1-dimensional example is provided
in Section 6. However, the authors do not know whether or not there exist
examples with the above properties that satisfy the Bochner–Hartogs prop-
erty (and hence do not admit proper holomorphic mappings onto Riemann
surfaces).
Section 1 is a consideration of some elementary properties of ends, as

well as some elementary topological properties of complex manifolds with
the Bochner–Hartogs property. Section 2 contains the definition of bounded
geometry. Section 3 consists of some terminology and facts from potential
theory, and a proof that the Bochner–Hartogs property holds for any one-
ended connected noncompact hyperbolic complete Kähler manifold with no

TOME 66 (2016), FASCICULE 1



242 Terrence NAPIER & Mohan RAMACHANDRAN

nontrivial L2 holomorphic 1-forms. A modification of Nakai’s construction
of an infinite-energy positive quasi-Dirichlet finite harmonic function on
an irregular hyperbolic manifold, as well as a modification of a theorem of
Sullivan which gives pluriharmonicity in the setting of a complete Kähler
manifold with bounded geometry of order two, appear in Section 4. The
proof of Theorem 0.1 and the proofs of some related results appear in
Section 5. An example of an irregular hyperbolic complete Kähler manifold
with one end and bounded geometry of all orders is constructed in Section 6.

1. Ends and the Bochner–Hartogs property

In this section, we consider an elementary topological property of com-
plex manifolds with the Bochner–Hartogs property. Further topological
characterizations of the Bochner–Hartogs dichotomy will be considered in
Section 5. We first recall some terminology and facts concerning ends.

By an end of a connected manifold M , we will mean either a component
E of M \K with noncompact closure, where K is a given compact subset
of M , or an element of

lim
←
π0(M \K),

where the limit is taken as K ranges over the compact subsets of M (or
equivalently, the compact subsets ofM for which the complementM\K has
no relatively compact components, since the union of any compact subset
ofM with the relatively compact connected components of its complement
is compact). The number of ends of M will be denoted by e(M). For a
compact set K such that M \K has no relatively compact components, we
will call

M \K = E1 ∪ · · · ∪ Em,
where {Ej}mj=1 are the distinct components ofM\K, an ends decomposition
for M .

Lemma 1.1. — Let M be a connected noncompact C∞ manifold.
(a) If S b M , then the number of components of M \ S that are not

relatively compact in M is at most the number of components of
M \ T for any set T with S ⊂ T bM . In particular, the number of
such components of M \ S is at most e(M).

(b) If K is a compact subset of M , then there exists a C∞ relatively
compact domain Ω in M containing K such that M \ Ω has no
compact components. In particular, if k is a positive integer with
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k 6 e(M), then we may choose Ω so that M \Ω also has at least k
components; and hence ∂Ω has at least k components.

(c) If Ω is a nonempty relatively compact domain in M , then the num-
ber of components of ∂Ω is at most e(Ω), with equality if Ω is also
smooth.

(d) Given an ends decomposition M \ K = E1 ∪ · · · ∪ Em, there is
a connected compact set K ′ ⊃ K such that any domain Θ in M

containing K ′ has an ends decomposition Θ \K = E′1 ∪ · · · ∪ E′m,
where E′j = Ej ∩Θ for j = 1, . . . ,m.

(e) If Ω and Θ are domains in M with Θ ⊂ Ω and both M \ Ω and
Ω \ Θ have no compact components, then M \ Θ has no compact
components.

(f) If M admits a proper surjective continuous open mapping onto an
orientable topological surface that is not simply connected, then
there exists a C∞ relatively compact domain Ω in M such that
M \ Ω has no compact components and ∂Ω is not connected.

Proof. — For the proof of (a), we simply observe that if S ⊂ T b M ,
then each connected component of M \ S that is not relatively compact
in M must meet M \ T and must therefore contain some component of
M \ T . Choosing T ⊃ S to be a compact set for which M \ T has no
relatively compact components, we see that the number of components of
M \ S is at most e(M).
For the proof of (b), observe that given a compact set K ⊂ M , we may

fix a C∞ domain Ω0 with K ⊂ Ω0 b M . The union of Ω0 with those
(finitely many) components of M \ Ω0 which are compact is then a C∞
relatively compact domain Ω ⊃ K in M for which M \ Ω has no compact
components. Given a positive integer k 6 e(M), we may choose Ω to also
contain a compact set K ′ for which M \ K ′ has at least k components
and no relatively compact components in M . Part (a) then implies that
M \Ω has at least k components, and since each component must contain
a component of ∂Ω, we see also that ∂Ω has at least k components.

For the proof of (c), suppose Ω is a nonempty relatively compact domain
in M and k is a positive integer. If ∂Ω has at least k components, then
we may fix a covering of ∂Ω by disjoint relatively compact open subsets
U1, . . . , Uk of M each of which meets ∂Ω (one may prove the existence
of such sets by induction on k). We may also fix a compact set K ⊂ Ω
containing Ω\(U1∪· · ·∪Uk) such that the components of Ω\K ⊂ U1∪· · ·∪Uk
are not relatively compact in Ω. For each j = 1, . . . , k, Uj meets ∂Ω and
therefore some component E of Ω \ K, and hence E ⊂ Uj . Since Ω \ K
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has at most e(Ω) components, it follows that k 6 e(Ω). Furthermore, if Ω
is smooth, then we may choose k to be equal to the number of boundary
components, and we may choose the arbitrarily small neighborhoods so
that Uj ∩ Ω is connected for each j. We then get k = e(Ω) in this case.

For the proof of (d), letM \K = E1∪· · ·∪Em be an ends decomposition.
We may fix a C∞ relatively compact domain Ω in M containing K such
that M \ Ω has no compact components, and for each j = 1, . . . ,m, we
may fix a connected compact set Aj ⊂ Ej such that Aj meets each of the
finitely many components of Ej ∩ ∂Ω. The compact set K ′ ≡ Ω ∪

⋃m
j=1Aj

then has the required properties.
For the proof of (e), suppose Ω and Θ are domains inM with Θ ⊂ Ω, and

bothM \Ω and Ω\Θ have no compact components. If E is a component of
M \Θ, then either E meets M \Ω, in which case E contains a noncompact
component of M \ Ω, or E ⊂ Ω, in which case E is a component of Ω \Θ.
In either case, E is noncompact.

Finally for the proof of (f), suppose Φ: M → S is a proper surjective con-
tinuous open mapping onto an orientable topological surface S that is not
simply connected. By part (b), we may assume without loss of generality
that e(M) = 1. If U is any open set in S and V is any component of Φ−1(U),
then Φ(V ) is both open and closed in U ; i.e., Φ(V ) is a component of U .
Consequently, if K ⊂ S is a compact set for which S \K has no relatively
compact components and V is any component ofM\Φ−1(K) = Φ−1(S\K),
then Φ(V ) must be a component of S \ K. Hence V must be the unique
component of M \Φ−1(K) that is not relatively compact in M , and it fol-
lows that V = M \Φ−1(K) and Φ(V ) = S \K are connected. In particular,
e(S) = 1.
Since every planar domain with one end is simply connected, S must be

nonplanar; that is, there exists a nonseparating simple closed curve in S.
Hence there exists a homeomorphism Ψ of a suitable annulus ∆(0; r′, R′) ≡
{ z ∈ C | r′ < |z| < R′ } onto a domain A′ b S with connected com-
plement S \ A′. Fixing r and R with 0 < r′ < r < R < R′, setting
A ≡ Ψ(∆(0; r,R)) b A′, F ≡ S \ A and E ≡ Φ−1(F ) = M \ Φ−1(A),
and letting Θ be a component of Φ−1(A), we see that E is connected and
Φ(Θ) = A (by the above), and that E ⊂ M \ Θ. It also follows that
M \ Θ is connected. For if K is a compact component of M \ Θ, then
we must have K ∩ E = ∅. Forming a connected neighborhood U of K in
M \E ⊂M \E = Φ−1(A), we get Φ(K) ⊂ Φ(U) ⊂ A, and hence Φ(U) ⊂ A.
Thus K must lie in some component V ⊂ M \ Θ of Φ−1(A), and hence
K = V . But then K must be both open and closed in M , which is clearly

ANNALES DE L’INSTITUT FOURIER



THE BOCHNER–HARTOGS DICHOTOMY 245

impossible. Therefore M \ Θ is connected. Moreover, since Φ(Θ) = A, we
must have Φ(∂Θ) = ∂A, and hence ∂Θ is not connected. Applying parts
(b), (c), and (e), we get the desired smooth domain Ω b Θ. �

As indicated in the introduction, a connected noncompact complex man-
ifold with the Bochner–Hartogs property must have exactly one end and
cannot admit a proper holomorphic mapping onto a Riemann surface. In
fact, the following elementary observations suggest that complex manifolds
with the Bochner–Hartogs property are very different topologically from
those admitting proper holomorphic mappings onto Riemann surfaces:

Proposition 1.2. — Let X be a connected noncompact complex man-
ifold.

(a) Assume that H1
c (X,O) = 0. Then e(X) = 1. In fact, if Ω is any

nonempty domain in X for which each connected component of the
complement X \Ω is noncompact, then e(Ω) = 1. In particular, if Ω
is a relatively compact domain inX andX\Ω is connected, then ∂Ω
is connected. Moreover, every compact orientable C∞ hypersurface
in X is the boundary of some smooth relatively compact domain
in X.

(b) If X admits a surjective proper continuous open mapping onto an
orientable topological surface that is not simply connected (for ex-
ample, if X admits a proper holomorphic mapping onto a Riemann
surface other than the disk or the plane), then there exists a C∞
relatively compact domain Ω in X such that X \Ω is connected but
∂Ω is not connected (and e(Ω) > 1). In particular, H1

c (X,O) 6= 0.

Proof. — For the proof of (a), let us assume that H1
c (X,O) = 0. As ar-

gued in the introduction, we must then have e(X) = 1. Next, we show that
any compact orientable C∞ hypersurface M in X is the boundary of some
relatively compact C∞ domain in X. For we may fix a relatively compact
connected neighborhood U of M in X such that U \M has exactly two
connected components, U0 and U1. We may also fix a relatively compact
neighborhood V of M in U and a C∞ function λ on X \ M such that
suppλ b U , λ ≡ 0 on U0 ∩ V , and λ ≡ 1 on U1 ∩ V . Hence ∂̄λ extends
to a ∂̄-closed C∞ (0, 1)-form α on X with compact support in U \M , and
since H1

c (X,O) = 0, we have α = ∂̄β for some C∞ compactly supported
function β on X. The difference f ≡ λ − β is then a holomorphic func-
tion on X \M that vanishes on some nonempty open subset. If X \M
is connected, then f ≡ 0 on the entire set X \M , and in particular, the
restriction β �V is a C∞ function that is equal to 1 on U1 ∩V , 0 on U0 ∩V .

TOME 66 (2016), FASCICULE 1
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Since M = V ∩ ∂U0 = V ∩ ∂U1, we have arrived at a contradiction. Thus
X \ M cannot be connected, and hence X \ M must have exactly two
connected components, one containing U0 and the other containing U1.
Since e(X) = 1, one of these connected components must be a relatively
compact C∞ domain with boundary M in X. It follows that in particular,
the boundary of any relatively compact C∞ domain in X with connected
complement must be connected.
Next, suppose Ω is an arbitrary nonempty domain for which X \Ω has no

compact components. If e(Ω) > 1, then part (b) of Lemma 1.1 provides a
C∞ relatively compact domain Θ in Ω such that Ω\Θ has no compact com-
ponents and ∂Θ is not connected, and hence part (e) implies that X \Θ has
no compact components; i.e., X \Θ is connected. However, as shown above,
any smooth relatively compact domain in X with connected complement
must have connected boundary. Thus we have arrived at a contradiction,
and hence Ω must have only one end. In particular, if Ω b X (and X \ Ω
is connected), then by part (c) of Lemma 1.1, ∂Ω must be connected.
Part (b) follows immediately from part (f) of Lemma 1.1. �

2. Bounded geometry

In this section, we recall the definition of bounded geometry and we
fix some conventions. Let X be a complex manifold with almost complex
structure J : TX → TX. By a Hermitian metric on X, we will mean a
Riemannian metric g on X such that g(Ju, Jv) = g(u, v) for every choice
of real tangent vectors u, v ∈ TpX with p ∈ X. We call (X, g) a Hermitian
manifold. We will also denote by g the complex bilinear extension of g to the
complexified tangent space (TX)C. The corresponding real (1, 1)-form ω is
given by (u, v) 7→ ω(u, v) ≡ g(Ju, v). The corresponding Hermitian metric
(in the sense of a smoothly varying family of Hermitian inner products)
in the holomorphic tangent bundle T 1,0X is given by (u, v) 7→ g(u, v̄).
Observe that with this convention, under the holomorphic vector bundle
isomorphism (TX, J)

∼=→ T 1,0X given by u 7→ 1
2 (u − iJu), the pullback of

this Hermitian metric to (TX, J) is given by (u, v) 7→ 1
2g(u, v)− i

2ω(u, v). In
a slight abuse of notation, we will also denote the induced Hermitian metric
in T 1,0X, as well as the induced Hermitian metric in Λr(TX)C⊗Λs(T ∗X)C,
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by g. The corresponding Laplacians are given by:

∆ = ∆d ≡ −(dd∗ + d∗d),

∆∂̄ = −(∂̄∂̄∗ + ∂̄∗∂̄),
∆∂ = −(∂∂∗ + ∂∗∂).

If (X, g, ω) is Kähler, i.e., dω = 0, then ∆ = 2∆∂̄ = 2∆∂ .

Definition 2.1. — For S ⊂ X and k a nonnegative integer, we will say
that a Hermitian manifold (X, g) of dimension n has bounded geometry
of order k along S if for some constant C > 0 and for every point p ∈ S,
there is a biholomorphism Ψ of the unit ball B ≡ BgCn (0; 1) ⊂ Cn onto a
neighborhood of p in X such that Ψ(0) = p and such that on B,

C−1gCn 6 Ψ∗g 6 CgCn and |DmΨ∗g| 6 C for m = 0, 1, 2, . . . , k.

3. Green’s functions and harmonic projections

In this section we recall some terminology and facts from potential the-
ory (a more detailed outline is provided in [21]). We will also see that
the Bochner–Hartogs property holds for a connected noncompact complete
Kähler manifold with exactly one end and no nontrivial L2 holomorphic
1-forms.

A connected noncompact oriented Riemannian manifold (M, g) is called
hyperbolic if there exists a positive symmetric Green’s function G(x, y)
on M ; otherwise, M is called parabolic. Equivalently, M is hyperbolic if
given a relatively compact C∞ domain Ω for which no connected compo-
nent ofM \Ω is compact, there is a connected component E ofM \Ω and a
(unique) greatest C∞ function uE : E → [0, 1) such that uE is harmonic on
E, uE = 0 on ∂E, and supE uE = 1 (see, for example, Theorem 3 of [11]).
We will also call E, and any end containing E, a hyperbolic end. An end
that is not hyperbolic is called parabolic, and we set uE ≡ 0 for any para-
bolic end component E ofM \Ω. We call the function u : M \Ω→ [0, 1) de-
fined by u�E = uE for each connected component E ofM \Ω, the harmonic
measure of the ideal boundary of M with respect to M \ Ω. A sequence
{xν} in M with xν → ∞ and G(·, xν) → 0 (equivalently, u(xν) → 1) is
called a regular sequence. Such a sequence always exists (for M hyper-
bolic). A sequence {xν} tending to infinity with lim infν→∞G(·, xν) > 0
(i.e., lim supν→∞ u(xν) < 1 or equivalently, {xν} has no regular subse-
quences) is called an irregular sequence. Clearly, every sequence tending to
infinity that is not regular admits an irregular subsequence. We say that an

TOME 66 (2016), FASCICULE 1
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end E of M is regular (irregular) if every sequence in E tending to infinity
in M is regular (respectively, there exists an irregular sequence in E). An-
other characterization of hyperbolicity is that M is hyperbolic if and only
if M admits a nonconstant negative continuous subharmonic function ϕ.
In fact, if {xν} is a sequence inM with xν →∞ and ϕ(xν)→ 0, then {xν}
is a regular sequence.
We recall that the energy (or Dirichlet integral) of a suitable function ϕ

(for example, a function with first-order distributional derivatives) on a
Riemannian manifold M is given by

∫
M
|∇ϕ|2 dV . To any C∞ compactly

supported ∂̄-closed (0, 1)-form α on a connected noncompact hyperbolic
complete Kähler manifold X, we may associate a bounded finite-energy
(i.e., Dirichlet-finite) pluriharmonic function on X \ suppα that vanishes
at infinity along any regular sequence:

Lemma 3.1 (see, for example, Lemma 1.1 of [24]). — Let X be a con-
nected noncompact complete hyperbolic Kähler manifold, and let α be a
C∞ compactly supported form of type (0, 1) on X with ∂̄α = 0. Then there
exist a closed and coclosed L2 harmonic form γ of type (0, 1) and a C∞
bounded function β : X → C with finite energy such that γ = α− ∂̄β and
β(xν)→ 0 for every regular sequence {xν} in X.

Remarks.
1. In particular, γ̄ is a holomorphic 1-form on X, and β is plurihar-

monic on the complement of the support of α.
2. Under certain conditions, the leaves of the foliation determined by
γ̄ outside a large compact subset of X are compact, and one gets a
proper holomorphic mapping onto a Riemann surface.

3. According to Lemma 3.2 below (which is a modification of an ob-
servation due to J. Wang), if β is holomorphic on some hyperbolic
end, then β vanishes on that end.

Lemma 3.2 (cf. Lemma 1.3 of [24]). — Let X be a connected noncom-
pact complete (hyperbolic) Kähler manifold, and let E be a hyperbolic end
of X. If f is a bounded holomorphic function on E and f(xν)→ 0 for every
regular sequence {xν} for X in E, then f ≡ 0 on E.

Proof. — We may fix a nonempty smooth domain Ω such that ∂E ⊂ Ω b
X and X \ Ω has no compact connected components. In particular, some
component E0 of E \Ω is a hyperbolic end of X. The harmonic measure of
the ideal boundary of X with respect to X \ Ω is a nonconstant function
u : X \ Ω→ [0, 1). By replacing f with the product of f and a sufficiently
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small nonzero constant, we may assume that |f | < 1 and hence for each
ε > 0, u + ε log |f | < 0 on E ∩ ∂Ω. Thus we get a nonnegative bounded
continuous subharmonic function ϕε on X by setting ϕε ≡ 0 on X \E0 and
ϕε ≡ max(0, u + ε log |f |) on E0. If f(p) 6= 0 at some point p ∈ E0, then
ϕε(p) > 0 for ε sufficiently small. However, any sequence {xν} in E0 with
ϕε(xν) → m ≡ supϕε > 0 must be a regular sequence and must therefore
satisfy u(xν) + ε log |f(xν)| → −∞, which contradicts the choice of {xν}.
Thus f vanishes on E0 and therefore, on E. �

The above considerations lead to the following observation (cf. Proposi-
tion 4.4 of [23]):

Theorem 3.3. — Let X be a connected noncompact hyperbolic com-
plete Kähler manifold with no nontrivial L2 holomorphic 1-forms.

(a) For every compactly supported ∂̄-closed C∞ form α of type (0, 1)
on X, there exists a bounded C∞ function β with finite energy on X
such that ∂̄β = α on X and β vanishes on every hyperbolic end E
of X that is contained in X \ suppα.

(b) In any ends decomposition X \K = E1∪· · ·∪Em, exactly one of the
ends, say E1, is hyperbolic, and moreover, every holomorphic func-
tion on E1 admits a (unique) extension to a holomorphic function
on X.

(c) If e(X) = 1 (equivalently, every end of X is hyperbolic), then
H1
c (X,O) = 0.

Proof. — Given a compactly supported ∂̄-closed C∞ form α of type (0, 1)
on X, Lemma 3.1 provides a bounded C∞ function β with finite energy
such that ∂̄β = α and β(xν) → 0 for every regular sequence {xν} in X

(by hypothesis, the L2 holomorphic 1-form γ̄ provided by the lemma must
be trivial). In particular, β is holomorphic on X \ suppα, and Lemma 3.2
implies that β must vanish on every hyperbolic end of X contained in X \
suppα. Thus part (a) is proved.
For the proof of part (b), suppose X \ K = E1 ∪ · · · ∪ Em is an ends

decomposition. Then at least one of the ends, say E1, must be hyperbolic.
Given a function f ∈ O(X \K), we may fix a relatively compact neighbor-
hood U of K in X and a C∞ function λ on X such that λ ≡ f on X \ U .
Applying part (a) to the (0, 1)-form α ≡ ∂̄λ, we get a C∞ function β such
that ∂̄β = α on X and β ≡ 0 on any hyperbolic end contained in X \ U .
If Ej is a hyperbolic end (for example, if j = 1), then Ej \U must contain
a hyperbolic end E of X, and the holomorphic function h ≡ λ − β on X
must agree with f on E and therefore, on Ej . Thus we get a holomorphic
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function on X that agrees with f on every Ej which is hyperbolic. Taking
f to be a locally constant function on X \ K with distinct values on the
components E1, . . . , Em, we see that in fact, Ej must be a parabolic end
for j = 2, . . . ,m.
Part (c) follows immediately from parts (a) and (b). �

We close this section with a preliminary step toward the proof of Theo-
rem 0.1:

Lemma 3.4. — Suppose (X, g) is a connected noncompact hyperbolic
complete Kähler manifold with bounded geometry of order 0, e(X) = 1, and
there exists a real-valued pluriharmonic function ρ with bounded gradient
and infinite energy on X. Then X admits a proper holomorphic mapping
onto a Riemann surface if and only if H1

c (X,O) 6= 0.

Proof. — Given a compactly supported ∂̄-closed C∞ form α of type (0, 1)
onX, Lemma 3.1 provides a closed and coclosed L2 harmonic form γ of type
(0, 1) and a C∞ bounded function β : X → C with finite energy such that
γ = α− ∂̄β and β(xν)→ 0 for every regular sequence {xν} in X. If γ ≡ 0,
then ∂̄β = α and Lemma 3.2 implies that β vanishes on the complement
of some compact set. If γ is nontrivial, then the L2 holomorphic 1-form
θ1 ≡ γ̄ and the bounded holomorphic 1-form θ2 ≡ ∂ρ, which is not in L2,
must be linearly independent. Theorem 0.1 and Theorem 0.2 of [26] then
provide a proper holomorphic mapping of X onto a Riemann surface. �

Remark. — The proofs of Lemma 1.1 of [26] and Theorem 0.1 of [26]
(the latter fact was applied above and relies on the former) contain a minor
mistake in their application of continuity of intersections (see [29] or [31] or
Theorem 4.23 in [1]). In each of these proofs, one has a sequence of levels
{Lν} of a holomorphic mapping f : X → P1 and a sequence of points {xν}
such that xν ∈ Lν for each ν and xν → p. For L the level of f through p,
by continuity of intersections, {Lν} converges to L relative to the ambient
manifold X \ [f−1(f(p)) \ L], but contrary to what was stated in these
proofs, a priori, this convergence need not hold relative to X. Aside from
this small misstatement, the proofs are correct and no further changes are
needed.

4. Quasi-Dirichlet-finite pluriharmonic functions

The following is the main advantage of working with irregular hyperbolic
manifolds:
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Lemma 4.1 (Nakai). — Let (M, g) be a connected noncompact irregular
hyperbolic oriented complete Riemannian manifold, let {qk} be an irregular
sequence, let G(·, ·) be the Green’s function, and let ρk ≡ G(·, qk) : M →
(0,∞] for each k. Then some subsequence of {ρk} converges uniformly on
compact subsets of M to a function ρ. Moreover, any such limit function ρ
has the following properties:

(i) The function ρ is positive and harmonic;
(ii)

∫
M
|∇ρ|2 dVg =∞;

(iii)
∫
ρ−1([a,b]) |∇ρ|

2
g dVg 6 b − a for all a and b with 0 6 a < b (in

particular, ρ is unbounded); and
(iv) If Ω is any smooth domain with compact boundary (i.e., either Ω is

an end or Ω bM) and at most finitely many terms of the sequence
{qk} lie in Ω, then

sup
Ω
ρ = max

∂Ω
ρ <∞ and

∫
Ω
|∇ρ|2 dV 6

∫
∂Ω
ρ
∂ρ

∂ν
dσ <∞.

Remark. — Following Nakai [20] and Sario and Nakai [28], a positive
function ϕ on a Riemannian manifold (M, g) is called quasi-Dirichlet-finite
if there is a positive constant C such that∫

ϕ−1([0,b])
|∇ϕ|2g dVg 6 Cb

for every b > 0. Nakai proved the existence of an Evans-type quasi-Dirichlet-
finite positive harmonic function on an irregular Riemann surface. His ar-
guments, which involve the behavior of the Green’s function at the Royden
boundary, carry over to a Riemannian manifold and actually show that the
constructed function has the slightly stronger property appearing in the
above lemma. One can instead prove the lemma via Nakai’s arguments sim-
ply by taking ρ = G(·, q), where G is the extension of the Green’s function
to the Royden compactification and q is a point in the Royden boundary
for which ρ > 0 on M . The direct proof appearing below is essentially this
latter argument.

Proof of Lemma 4.1. — Fixing a sequence of nonempty smooth do-
mains {Ωm}∞m=0 such that M \Ω0 has no compact connected components,⋃∞
m=0 Ωm = M , and Ωm−1 b Ωm for m = 1, 2, 3, . . . , and letting Gm be

the Green’s function on Ωm for each m, we get Gm ↗ G. Given m0 ∈ Z>0,
for each integer m > m0 and each point p ∈ Ωm0 , the continuous func-
tion Gm(p, ·)�Ωm\Ωm0

vanishes on ∂Ωm, and the function is positive on
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∂Ωm0 and harmonic on Ωm \ Ωm0 . Thus

Gm(p, ·)�Ωm\Ωm0
6 max
∂Ωm0

Gm(p, ·) 6 max
∂Ωm0

G(p, ·).

Passing to the limit we get

G(p, ·) 6 max
∂Ωm0

G(p, ·)

on M \ Ωm0 for each point p ∈ Ωm0 . Hence

G 6 Am0 ≡ max
Ωm0−1×∂Ωm0

G

on Ωm0−1 × (M \ Ωm0). In particular, ρk = G(·, qk) 6 Am0 on Ωm0−1 for
k � 0. Therefore, by replacing {qk} with a suitable subsequence, we may
assume that ρk converges uniformly on compact subsets of M to a positive
harmonic function ρ.

Suppose 0 < a < b. Given k ∈ Z>0, for m� 0 we have qk ∈ Ωm, and the
function ρ

(m)
k ≡ Gm(·, qk) : Ωm → [0,∞] satisfies (ρ(m)

k )−1((a,∞]) b Ωm.
Hence if r and s are regular values of ρ(m)

k �Ωm\{qk} with a < r < s < b,
then∫

(ρ(m)
k

)−1((r,s))
|∇ρ(m)

k |2 dV =
∫

(ρ(m)
k

)−1(s)
ρ

(m)
k

∂ρ
(m)
k

∂ν
dσ

−
∫

(ρ(m)
k

)−1(r)
ρ

(m)
k

∂ρ
(m)
k

∂ν
dσ

=
∫

(ρ(m)
k

)−1(s)
s ·

∂ρ
(m)
k

∂ν
dσ

−
∫

(ρ(m)
k

)−1(r)
r ·

∂ρ
(m)
k

∂ν
dσ

= (r − s)
∫
∂Ωm

∂ρ
(m)
k

∂ν
dσ

= (s− r)
∫
∂Ωm

(−1) ∂
∂ν

[Gm(·, qk)] dσ

= s− r,

where ∂/∂ν is the normal derivative oriented outward for the open sets
Ωm, (ρ(m)

k )−1((0, s)), and (ρ(m)
k )−1((0, r)). Here we have normalized Gm

(and similarly, all Green’s functions) so that −∆distr.Gm(·, q) is the Dirac
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function at q for each point q ∈ Ωm. Letting r → a+ and s→ b−, we get∫
(ρ(m)
k

)−1((a,b))
|∇ρ(m)

k |2 dV = (b− a).

Letting χA denote the characteristic function of each set A ⊂M , we have

lim
m→∞

|∇ρ(m)
k | = |∇ρk| on M \ {qk}

and lim inf
m→∞

χ(ρ(m)
k

)−1((a,b)) > χρ−1
k

((a,b)).

Hence Fatou’s lemma gives∫
ρ−1
k

((a,b))
|∇ρk|2 dV 6 (b− a).

Similarly, letting k →∞, we get∫
ρ−1((a,b))

|∇ρ|2 dV 6 (b− a).

Applying this inequality to a′ and b′ with 0 < a′ < b′ and letting a′ → a−

and b′ → b+, we get ∫
ρ−1([a,b])

|∇ρ|2 dV 6 (b− a).

Letting a → 0+ (and noting that ρ > 0), we also get the above inequality
for a = 0.
Assuming now that ρ has finite energy, we will reason to a contradiction.

We may fix a constant b > supΩ0 ρ that is a regular value of ρ, of ρk�M\{qk}
for all k, and of ρ(m)

k �Ωm\{qk} for all k and m. Note that we have not yet
shown that ρ is unbounded, so we have not yet ruled out the possibility
that ρ−1((0, b)) = M , and in particular, that ρ−1(b) = ∅. Since ρk → ρ

uniformly on compact subsets of M as k →∞, and for each k, ρ(m)
k → ρk

uniformly on compact subsets ofM \{qk} as m→∞, we may fix a positive
integer k0 and a strictly increasing sequence of positive integers {mk} such
that qk ∈ Ωmk for each k, ρ(mk)

k 6 ρk < b on Ω0 for each k > k0, and
ρ

(mk)
k → ρ uniformly on compact sets as k →∞. Letting ϕ ≡ min(ρ, b) and

letting ϕk : M → [0, b] be the Lipschitz function given by

ϕk ≡

{
min(ρ(mk)

k , b) on Ωmk
0 elsewhere

for each k, we see that ϕk → ϕ uniformly on compact subsets of M and
∇ϕk → ∇ϕ uniformly on compact subsets of M \ ρ−1(b). Moreover, for
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each k, ∫
M

|∇ϕk|2 dV =
∫

(ρ(mk)
k

)−1((0,b))
|∇ρ(mk)

k |2 dV = b.

Applying weak compactness, we may assume that {∇ϕk} converges weakly
in L2 to a vector field v. But for each compact set K ⊂ M \ ρ−1(b),
(∇ϕk)�K → (∇ϕ)�K uniformly, and therefore in L2. Since ρ−1(b) is a set
of measure 0, we must have v = ∇ϕ (in L2). Hence∫

ρ−1((0,b))
|∇ρ|2 dV = 〈∇ϕ,∇ρ〉 ← 〈∇ϕk,∇ρ〉

=
∫
∂Ωmk

ρ
(mk)
k

∂ρ

∂ν
dσ

+
∫

(ρ(mk)
k

)−1(b)
ρ

(mk)
k

∂ρ

∂ν
dσ

= 0− b
∫
∂
(

(ρ(mk)
k

)−1((b,∞])
) ∂ρ
∂ν

dσ = 0.

It follows that ρ ≡ a for some constant a (in particular, 0 < a < b). Letting
u be the harmonic measure of the ideal boundary of M with respect to
M \ Ω0 and letting ψ : M → [0, 1) be the Dirichlet-finite locally Lipschitz
function on M obtained by extending u by 0, we get

0 = 〈0,∇ψ〉 ← 〈∇ϕk,∇ψ〉

=
∫
∂Ωmk

ρ
(mk)
k

∂u

∂ν
dσ −

∫
∂Ω0

ρ
(mk)
k

∂u

∂ν
dσ +

∫
(ρ(mk)
k

)−1(b)
ρ

(mk)
k

∂u

∂ν
dσ

= 0−
∫
∂Ω0

ρ
(mk)
k

∂u

∂ν
dσ − b

∫
∂
(

(ρ(mk)
k

)−1((b,∞])
) ∂u
∂ν

dσ

= −
∫
∂Ω0

ρ
(mk)
k

∂u

∂ν
dσ

→ −a
∫
∂Ω0

∂u

∂ν
dσ < 0.

Thus we have arrived at a contradiction, and hence ρ must have infinite
energy.
Finally, given a smooth domain Ω as in (iv), for each k � 0, we have

qk /∈ Ω. For m � 0, we have qk ∈ Ωm and ∂Ω ⊂ Ωm. Since ρ(m)
k is then

continuous on Ω ∩ Ωm, harmonic on Ω ∩ Ωm, and zero on ∂Ωm, we also
have

sup
Ω∩Ωm

ρ
(m)
k = max

∂Ω
ρ

(m)
k and

∫
Ω∩Ωm

|∇ρ(m)
k |2 dV =

∫
∂Ω
ρ

(m)
k

∂ρ
(m)
k

∂ν
dσ.
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Letting m → ∞, and then letting k → ∞, we get the required properties
of ρ on Ω. �

We will also use the following analogue of a theorem of Sullivan (see [30]
and Theorem 2.1 of [21]):

Lemma 4.2. — Let (M, g) be a connected noncompact oriented com-
plete Riemannian manifold, E an end of M , and h a positive C∞ function
on M . Assume that:

(i) There exist positive constants K, R0, and δ such that Ricg > −Kg
on E and vol (B(x;R0)) > δ for every point x ∈ E;

(ii) The restriction h�E is harmonic; and
(iii) For some positive constant C,

∫
E∩h−1([a,b]) |∇h|

2 dV 6 C(b−a)+C

for all a and b with 0 6 a < b.
Then |∇h| is bounded on E, and for each point p ∈M ,∫

E∩B(p;R)
|∇h|2 dV = O(R) as R→∞.

Sketch of the proof. — We may fix a nonempty compact set A ⊃ ∂E.
As in the proof of Theorem 2.1 of [21], setting ϕ ≡ |∇h|2, we get a positive
constant C1 such that for each point x0 ∈ E with dist(x0, A) > R1 ≡ 4R0,

sup
B(x0;R0)

ϕ 6 C1

∫
B(x0;2R0)

ϕdV.

For a ≡ infB(x0;2R0) h and b ≡ supB(x0;2R0) h, we have on the one hand,∫
B(x0;2R0)

ϕdV 6
∫
E∩h−1([a,b])

ϕdV 6 C(b− a) + C.

On the other hand, b − a 6 supB(x0,R1) |∇h|R1. Combining the above,
we see that if C2 > 1 is a sufficiently large positive constant that is, in
particular, greater than the supremum of |∇h| on the 2R1-neighborhood
of A, then for each point x0 ∈ E at which |∇h(x0)| > C2, we have

sup
B(x0;R0)

|∇h|2 < C2 sup
B(x0;R1)

|∇h|.

Fixing constants C3 > C2 and ε > 0 so that C1−ε
3 > C2, we see that if

|∇h(x0)| > C3, then there exists a point x1 ∈ B(x0;R1) such that

(1 + ε) log |∇h(x0)| 6 log |∇h(x1)|.

Assuming now that |∇h| is unbounded on E, we will reason to a con-
tradiction. Fixing a point x0 ∈ E at which |∇h(x0)| > C3 and applying
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the above inequality inductively, we get a sequence {xm} in E such that
dist(xm, xm−1) < R1 and

(1 + ε) log |∇h(xm−1)| 6 log |∇h(xm)|

form = 1, 2, 3, . . . ; that is, {|∇h(xm)|} has super-exponential growth. How-
ever, the local version of Yau’s Harnack inequality (see [6]) provides a con-
stant C4 > 0 such that

|∇h(x)| 6 C4h(x) and h(x) 6 C4h(p)

for all points x, p ∈ M with dist(p,A) > 2R1 and dist(x, p) < R1, so
{|∇h(xm)|} has at most exponential growth. Thus we have arrived at a
contradiction, and hence |∇h| must be bounded on E.

Finally, by redefining h outside a neighborhood of E, we may assume
without loss of generality that |∇h| is bounded onM . Fixing a point p ∈M ,
we see that for R > 0, a ≡ infB(p;R) h, and b ≡ supB(p;R) h, we have∫

E∩B(p;R)
|∇h|2 dV 6

∫
E∩h−1([a,b])

|∇h|2 dV

6 C(b− a) + C

6 C · sup |∇h| · 2R+ C.

Therefore, ∫
E∩B(p;R)

|∇h|2 dV = O(R) as R→∞.

�

Applying the above in the Kähler setting, we get the following:

Proposition 4.3. — Let (X, g) be a connected noncompact complete
Kähler manifold, let E be an irregular hyperbolic end along which X has
bounded geometry of order 2 (or for which there exist positive constants K,
R0, and δ such that Ricg > −Kg on E and vol (B(x;R0)) > δ for every
point x ∈ E), let {qk} be an irregular sequence in E, let G(·, ·) be the
Green’s function on X, and let ρk ≡ G(·, qk) : X → (0,∞] for each k.
Then some subsequence of {ρk} converges uniformly on compact subsets
of X to a function ρ. Moreover, any such limit function ρ has the following
properties:

(i) The function ρ is positive and pluriharmonic;
(ii)

∫
E
|∇ρ|2 dV =∞ >

∫
X\E |∇ρ|

2 dV ;
(iii)

∫
ρ−1([a,b]) |∇ρ|

2 dV 6 b − a for all a and b with 0 6 a < b (in
particular, ρ is unbounded on E);
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(iv) If Ω is any smooth domain with compact boundary (i.e., either Ω is
an end or Ω b X) and at most finitely many terms of the sequence
{qk} lie in Ω, then

sup
Ω
ρ = max

∂Ω
ρ <∞ and

∫
Ω
|∇ρ|2 dV 6

∫
∂Ω
ρ
∂ρ

∂ν
dσ <∞;

(v) |∇ρ| is bounded.

Proof. — By Lemma 4.1, some subsequence of {ρk} converges uniformly
on compact sets, and the limit ρ of any such subsequence is positive and
harmonic and satisfies (ii)–(iv). Lemma 4.2 implies that |∇ρ| is bounded
on E and for p ∈ X,

∫
B(p;R) |∇ρ|

2 dV = O(R) (hence
∫
B(p;R) |∇ρ|

2 dV =
o(R2)) as R → ∞. By an observation of Gromov [14] and of Li [19] (see
Corollary 2.5 of [21]), ρ is pluriharmonic. �

5. Proof of the main result and some related results

This section contains the proof of Theorem 0.1. We also consider some
related results.

Proof of Theorem 0.1. — Let X be a connected noncompact hyperbolic
complete Kähler manifold with bounded geometry of order two, and assume
thatX has exactly one end. By the main result of [24], the Bochner–Hartogs
dichotomy holds for X regular hyperbolic. If X is irregular hyperbolic, then
Proposition 4.3 provides a (quasi-Dirichlet-finite) positive pluriharmonic
function ρ on X with infinite energy and bounded gradient, and hence
Lemma 3.4 gives the claim. �

The above arguments together with those appearing in [21], [25], and
[26] give results for multi-ended complete Kähler manifolds. To see this, we
first recall some terminology and facts.

Definition 5.1. — LetM be a connected manifold. Following Geoghe-
gan [10] (see also Kropholler and Roller [18]), for Υ: M̃ →M the universal
covering of M , elements of the set

lim
←
π0[Υ−1(M \K)],

where the limit is taken as K ranges over the compact subsets ofM (or the
compact subsets of M for which the complement M \K has no relatively
compact components) will be called filtered ends. The number of filtered
ends of M will be denoted by ẽ(M).

Lemma 5.2. — LetM be a connected noncompact topological manifold.
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(a) We have ẽ(M) > e(M). In fact for any k ∈ N, we have ẽ(M) > k if
and only if there exists an ends decompositionM\K = E1∪· · ·∪Em
such that

m∑
j=1

[π1(M) : Γj ] > k,

where Γj ≡ im
[
π1(Ej)→ π1(M)

]
for j = 1, . . . ,m.

(b) If Υ: M̂ →M is a connected covering space, E is an end of M̂ , and
E0 ≡ Υ(E) &M , then
(i) E0 is an end of M ;
(ii) ∂E0 = Υ(∂E) \ E0;
(iii) E ∩Υ−1(∂E0) = (∂E) \Υ−1(E0);
(iv) The mapping Υ�E : E → E0 is proper and surjective; and
(v) If F0 ⊂ E0 \ Υ(∂E) is an end of M and F ≡ E ∩ Υ−1(F0),

then Υ�F : F → F0 is a finite covering and each connected
component of F is an end of M̂ .

(c) If Υ: M̂ → M is a connected covering space, then ẽ(M̂) 6 ẽ(M),
with equality holding if the covering is finite.

Proof. — For any nonempty domain U in M , the index of im
[
π1(U)→

π1(M)
]
is equal to the number of connected components of the lifting of U

to the universal covering of M , so part (a) holds.
For the proof of part (b), observe that E0 is a domain in M , ∂E0 6= ∅,

Υ(E) ⊂ E0, and therefore, E ∩ Υ−1(∂E0) = (∂E) \ Υ−1(E0). Given a
point p ∈ M , we may fix domains U and V in M such that p ∈ U b V ,
U ∩ ∂E0 6= ∅, and the image of π1(V ) in π1(X) is trivial (their existence is
trivial if p ∈ ∂E0, while for p /∈ ∂E0, we may take U and V to be sufficiently
small connected neighborhoods of the image of an injective path from p to
a point in ∂E0). The connected components of Û ≡ Υ−1(U) then form
a locally finite collection of relatively compact domains in M̂ , and those
components that meets E must also meet the compact set ∂E, so only
finitely many components, say U1, . . . , Um, meet E. Thus for U0 ≡

⋃m
i=1 Ui,

we have Û ∩ E = U0 ∩ E b M̂ , and it follows that the restriction E → E0
is a proper mapping. In particular, this is a closed mapping, and hence
Υ(E) = E0. Furthermore, the boundary

∂E0 = Υ(E) \Υ(E) = Υ(∂E) \ E0

is compact and E0 is noncompact (by properness), so E0 must be an end
of M .
Finally, if F0 ⊂ E0 \ Υ(∂E) is an end of M , then each connected

component of Υ−1(F0) that meets E must lie in E. Thus the restriction

ANNALES DE L’INSTITUT FOURIER



THE BOCHNER–HARTOGS DICHOTOMY 259

F ≡ E ∩ Υ−1(F0) → F0 is a covering space. Properness then implies that
this restriction is actually a finite covering, ∂F ⊂ E∩Υ−1(∂F0) is compact,
and in particular, each connected component of F is an end of M̂ .
For the proof of part (c), let Υ̂ : M̃ → M̂ be the universal covering, and

let k ∈ N with ẽ(M̂) > k. Then there exists an ends decomposition M̂ \L =
F1 ∪ · · · ∪ Fn such that Υ̂−1(M̂ \ L) has at least k connected components,
and there exists an ends decomposition M \ K = E1 ∪ · · · ∪ Em such
that K ⊃ Υ(L). For each j = 1, . . . , n, part (b) implies that Υ(Fj) 6⊂ K,
and hence Fj meets, and therefore contains, some connected component
of Υ−1(M \K). Thus, under the universal covering Υ ◦ Υ̂ : M̃ → M , the
inverse image ofM \K has at least k connected components, and therefore
ẽ(M) > k. Thus ẽ(M) > ẽ(M̂). Furthermore, if Υ is finite covering map,
then the connected components of the liftings of the ends in any ends
decompostion of M form an ends decomposition for M̂ . Hence in this case
we have ẽ(M̂) > ẽ(M), and therefore we have equality. �

Definition 5.3 (cf. Definition 2.2 of [25]). — We will call an end E of
a connected noncompact complete Hermitian manifold X special if E is of
at least one of the following types:
(BG) X has bounded geometry of order 2 along E;
(W) There exists a continuous plurisubharmonic function ϕ on X such

that
{x ∈ E | ϕ(x) < a } b X ∀ a ∈ R;

(RH) E is a hyperbolic end and the Green’s function vanishes at infinity
along E; or

(SP) E is a parabolic end, the Ricci curvature of g is bounded be-
low on E, and there exist positive constants R and δ such that
vol

(
B(x;R)

)
> δ for all x ∈ E.

We will call an ends decomposition in which each of the ends is special a
special ends decomposition.

According to [13], [19], [14], [15], [21], [8], [25], and [26], a connected non-
compact complete Kähler manifold X that admits a special ends decom-
position and has at least three filtered ends admits a proper holomorphic
mapping onto a Riemann surface. One goal of this section is to show that
if X has an irregular hyperbolic end of type (BG), then two filtered ends
suffice.

Theorem 5.4. — If X is a connected noncompact hyperbolic complete
Kähler manifold that admits a special ends decomposition X \K = E1 ∪
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· · · ∪ Em for which E1 is an irregular hyperbolic end (i.e., E1 contains an
irregular sequence for X) of type (BG) and m > 2, then X admits a proper
holomorphic mapping onto a Riemann surface.

Sketch of the proof. — Every end lying in a special end is itself special,
so by the main results of [21] and [25], we may assume that m = e(X) = 2.
Moreover, as in the proof of Theorem 3.4 of [21], we may also assume
that E2 is a hyperbolic end of type (BG). Theorem 2.6 of [21] then pro-
vides a nonconstant bounded positive Dirichlet-finite pluriharmonic func-
tion ρ1 on X. Proposition 4.3 implies that X also admits a positive (quasi-
Dirichlet-finite) pluriharmonic function ρ2 with bounded gradient and infi-
nite energy. In particular, the holomorphic 1-forms θ1 ≡ ∂ρ1 and θ2 ≡ ∂ρ2,
are linearly independent, and Theorems 0.1 and 0.2 of [26] give a proper
holomorphic mapping of X onto a Riemann surface. �

Lemma 5.5 (cf. Proposition 4.1 of [24]). — Let (X, g) be a connected
noncompact complete Kähler manifold. If X admits a special ends decom-
position and some connected covering space Υ: X̂ → X admits a proper
holomorphic mapping onto a Riemann surface, then X admits a proper
holomorphic mapping onto a Riemann surface.

Proof. — The Cartan–Remmert reduction of X̂ is given by a proper
holomorphic mapping Φ̂ : X̂ → Ŝ of X̂ onto a Riemann surface Ŝ with
Φ̂∗OX̂ = O

Ŝ
. Fixing a fiber Ẑ0 of Φ̂, we may form a relatively compact

connected neighborhood Û0 of Ẑ0 in X̂ and a nonnegative C∞ plurisubhar-
monic function ϕ̂0 on X̂ \ Ẑ0 such that ϕ̂0 vanishes on X̂ \ Û0 and ϕ0 →∞
at Ẑ0. The image Z0 ≡ Υ(Ẑ0) is then a connected compact analytic sub-
set of X, and the function ϕ0 : x 7→

∑
y∈Υ−1(x) ϕ̂0(y) is a nonnegative C∞

plurisubharmonic function on the domain X \Z0 that vanishes on the com-
plement of the relatively compact connected neighborhood U0 ≡ Υ(Û0)
of Z0 in X and satisfies ϕ0 →∞ at Z0.
We may form a special ends decomposition X \K = E1 ∪ · · · ∪Em with

K ⊃ U0, and setting K0 ≡ K \ U0 and E0 ≡ U0 \ Z0, we get an ends
decomposition

(X \ Z0) \K0 = E0 ∪ E1 ∪ · · · ∪ Em

of X \ Z0. By part (d) of Lemma 1.1, for a � 0, the set {x ∈ X \ Z0 |
ϕ(x) < a } has a connected component Y0 that contains X \ U0 and has
the ends decomposition

Y0 \K0 = E′0 ∪ · · · ∪ E′m,
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where E′j ≡ Ej ∩ Y0 for j = 0, . . . ,m. In particular, the above is a special
ends decomposition for the complete Kähler metric g0 ≡ g+L (− log(a−ϕ))
on Y0 (see, for example, [9]), with E′0 regular hyperbolic and of type (W).
Here, for any C2 function ψ, L (ψ) denotes the Levi form of ψ; that is, in
local holomorphic coordinates (z1, . . . , zn),

L (ψ) =
n∑

j,k=1

∂2ϕ

∂zj∂z̄k
dzjdz̄k.

Theorem 3.6 of [26] implies that there exists a nonconstant nonnegative
continuous plurisubharmonic function on Y0 that vanishes on E′0∪K0 and,
therefore, extends to a continuous plurisubharmonic function α on X that
vanishes on K. Fixing a fiber Ẑ1 of Φ̂ through a point at which α ◦Υ > 0,
we see that, since α ◦ Υ is constant on Ẑ1, the image Z1 ≡ Υ(Ẑ1) must
be a connected compact analytic subset of X \ K ⊂ Y0 ⊂ X \ Z0. As
above, we get a domain Y1 ⊂ Y0, a complete Kähler metric g1 on Y1, and a
special ends decomposition of (Y1, g1) with at least three ends. Therefore,
by Theorem 3.4 of [21] (or Theorem 3.1 of [25]), there exists a proper
holomorphic mapping Φ1 : Y1 → S1 of Y1 onto a Riemann surface S1 such
that (Φ1)∗OY1 = OS1 . Forming the complement in X of two distinct fibers
of Φ1 and applying a construction similar to the above, we get a proper
holomorphic mapping Φ2 : Y2 → S2 of a domain Y2 ⊃ X \ Y1 in X onto
a Riemann surface S2 such that (Φ2)∗OY2 = OS2 . The maps Φ1 and Φ2
now determine a proper holomorphic mapping Φ of X onto the Riemann
surface

S ≡ (S1 t S2)
/

[Φ1(x) ∼ Φ2(x) ∀x ∈ Y1 ∩ Y2] .

�
Remarks.
1. The authors do not know whether or not the above lemma holds in

general for the base an arbitrary connected noncompact complete
Kähler manifold.

2. For the base a complete Kähler manifold with bounded geometry
(which is the relevant case for this paper), one may instead obtain
the lemma from properness of the projection from the graph over
a suitable irreducible component of the appropriate Barlet cycle
space as in (Theorem 3.18 and the appendix of) [5].

Theorem 5.6. — Suppose X is a connected noncompact irregular hy-
perbolic complete Kähler manifold with bounded geometry of order 2 and
e(X) = 1. If X admits a connected covering space Υ: X̂ → X with
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H1
c (X̂,O) 6= 0, then X admits a proper holomorphic mapping onto a Rie-

mann surface.

Proof. — Clearly, X̂ has bounded geometry of order 2. If e(X̂) > 3 or
e(X̂) = 1, then X̂ admits a proper holomorphic mapping onto a Riemann
surface, and Lemma 5.5 provides such a mapping on X. Thus we may
assume that e(X̂) = 2, and we may fix an ends decomposition X̂ \ K =
E1 ∪E2. By part (b) of Lemma 5.2, for j = 1, 2, Υ(Ej) is a hyperbolic end
of X. It follows that Ej is a hyperbolic end of X̂, since the lifting to X̂ of
a negative continuous subharmonic function with supremum 0 on X is a
negative continuous subharmonic function on X̂ with supremum 0 along Ej .

Proposition 4.3 provides an unbounded positive pluriharmonic function
ρ1 with bounded gradient and infinite energy on X, and we may set ρ̂1 ≡
ρ1 ◦Υ. Theorem 2.6 of [21] provides a nonconstant bounded pluriharmonic
function ρ̂2 with finite energy on X̂, and Theorems 0.1 and 0.2 of [26],
applied to the holomorphic 1-forms ∂ρ̂1 and ∂ρ̂2, give a proper holomorphic
mapping of X̂ onto a Riemann surface. Lemma 5.5 then gives the required
mapping on X. �

Proposition 1.2 provides some topological conditions that give nonva-
nishing of the first compactly supported cohomology with values in the
structure sheaf. In particular, since any manifold with at least two filtered
ends admits a connected covering space with at least two ends, we get the
following consequence of Theorem 5.6 (one may instead apply Theorem 5.4
and Lemma 5.5):

Corollary 5.7. — If X is a connected noncompact irregular hyper-
bolic complete Kähler manifold with bounded geometry of order 2, e(X) =
1, and ẽ(X) > 2, then X admits a proper holomorphic mapping onto a
Riemann surface.

We also get the following:

Corollary 5.8. — Suppose X is a connected noncompact irregular
hyperbolic complete Kähler manifold with bounded geometry of order 2,
e(X) = 1, Ω is a nonempty smooth relatively compact domain in X for
which E ≡ X \ Ω is connected (i.e., E is an end), and Γ′ ≡ im [π1(Ω) →
π1(X)]. If either ∂Ω is not connected, or ∂Ω is connected but π1(∂Ω) does
not surject onto Γ′, then X admits a proper holomorphic mapping onto a
Riemann surface.

Proof. — If ∂Ω is not connected, then part (a) of Proposition 1.2 implies
that H1

c (X,O) 6= 0, and hence X admits a proper holomorphic mapping
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onto a Riemann surface. Suppose instead that C ≡ ∂Ω is connected, but
Γ ≡ im [π1(C)→ π1(X)] $ Γ′. For a connected covering space Υ: X̂ → X

with Υ∗π1(X̂) = Γ, Υ maps some relatively compact connected neigh-
borhood U0 of some connected component C0 of Ĉ ≡ Υ−1(C) isomor-
phically onto a neighborhood U of C. By Theorem 5.6, we may assume
that e(X̂) = 1. The unique connected component Ω0 of Ω̂ ≡ Υ−1(Ω) for
which C0 is a boundary component is a smooth domain, and C0 $ ∂Ω0.
Moreover, each component of X̂ \ Ω0 must meet, and therefore contain,
a component of Υ−1(E), so any such component must have noncompact
closure. Proposition 1.2 and Theorem 5.6 together now give the claim. �

6. An irregular hyperbolic example

Because the existence of irregular hyperbolic complete Kähler manifolds
with one end and bounded geometry of order two is not completely obvious,
an example is provided in this section. In fact, the following is obtained:

Theorem 6.1. — There exists an irregular hyperbolic connected non-
compact complete Kähler manifold X with bounded geometry of all orders
such that e(X) = 1 and dimX = 1.

Remark. — The authors do not know whether or not there exists an
irregular hyperbolic connected noncompact complete Kähler manifold X

with bounded geometry of order 0 for which H1
c (X,O) = 0 (and hence

which does not admit a proper holomorphic mapping onto a Riemann sur-
face).

The idea of the construction is as follows. The complement of a closed
diskD in C is irregular hyperbolic, but it has two ends. Holomorphic attach-
ment of a suitable sequence of tubes (i.e., annuli) {Tν}, with boundary com-
ponents Aν and A′ν of Tν for each ν, satisfying Aν →∞ and A′ν → p ∈ ∂D,
yields an irregular hyperbolic Riemann surface with one end, and a direct
construction yields a Kähler metric with bounded geometry.

Lemma 6.2. — Let {∆(ζν ;Rν)}∞ν=0 be a locally finite sequence of dis-
joint disks in C. Then there exists a sequence of positive numbers {rν}∞ν=1
such that rν < Rν for ν = 1, 2, 3, . . . , and

b ≡
∞∑
ν=1

log
[
R−1

0 R−1
ν (|ζν − ζ0|+R0)(|ζν − ζ0|+Rν)

]
log
[
R−1

0 r−1
ν (|ζν − ζ0|+R0)(|ζν − ζ0| − rν)

] < 1.
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Moreover, for any such sequence {rν}, the region Ω ≡ C \
⋃∞
ν=1 ∆(ζν ; rν)

is hyperbolic, and there exists an irregular sequence {ηk} in Ω such that
ηk →∞ in C.

Proof. — It is easy to see that the above inequality will hold for all
sufficiently small positive sequences {rν}. For each ν = 1, 2, 3, . . . , let

Bν ≡ log
[
R−1

0 R−1
ν (|ζν − ζ0|+R0)(|ζν − ζ0|+Rν)

]
,

let
Cν ≡ log

[
R−1

0 r−1
ν (|ζν − ζ0|+R0)(|ζν − ζ0| − rν)

]
,

and let αν be the harmonic function on C \ {ζ0, ζν} given by

z 7→ αν(z) ≡ 1
Cν

log
[
|z − ζ0|
|z − ζν |

(
|ζν − ζ0|+R0

R0

)]
.

Clearly, Bν > 0, and since |ζν − ζ0| > Rν + R0, Cν > 0. At each point
z ∈ ∂∆(ζ0;R0), we have

0 6 αν(z) = 1
Cν

log
[
|ζν − ζ0|+R0

|z − ζν |

]
6
Bν
Cν

,

since (|ζν − ζ0| + Rν)|z − ζν | > R0Rν . At each point z ∈ ∂∆(ζν ; rν), we
have

αν(z) = 1
Cν

log
[
R−1

0 r−1
ν (|ζν − ζ0|+R0)|z − ζ0|

]
> 1;

while at each point z ∈ ∂∆(ζν ;Rν), we have

αν(z) = 1
Cν

log
[
R−1

0 R−1
ν (|ζν − ζ0|+R0)|z − ζ0|

]
6
Bν
Cν

.

Moreover,

0 6 lim
z→∞

αν(z) = 1
Cν

log
[
R−1

0 (|ζν − ζ0|+R0)
]
6
Bν
Cν

.

Therefore, since αν is harmonic, we have αν > 0 on

C \ [∆(ζ0;R0) ∪∆(ζν ; rν)] ⊃ Ω \∆(ζ0;R0),

and 0 6 αν 6
Bν
Cν

on C \ [∆(ζ0;R0) ∪∆(ζν ;Rν)]. Consequently, the series∑∞
ν=1 αν converges uniformly on compact subsets of Ω \ ∆(ζ0;R0) to a

nonnegative continuous function α such that α is positive and harmonic
on Ω \∆(ζ0;R0), α 6 b < 1 on the set

I ≡ Ω \
∞⋃
ν=0

∆(ζν ;Rν) = C \
∞⋃
ν=0

∆(ζν ;Rν),

and for each ν = 1, 2, 3, . . . , we have 0 < α−αν < 1 on ∆(ζν ;Rν)\∆(ζν ; rν)
and α > αν > 1 on ∂∆(zν ; rν).
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Clearly, Ω ⊃ ∆(ζ0;R0) is hyperbolic, and the harmonic measure of the
ideal boundary of Ω with respect to Ω \∆(ζ0;R0) extends to a continuous
function u : Ω\∆(ζ0;R0)→ [0, 1]. For each R > R0, the continuous function
βR on Ω \∆(ζ0;R0) given by

z 7→ βR(z) ≡ α(z) + log (|z − ζ0|/R0)
log(R/R0)

is harmonic on Ω \ ∆(ζ0;R0) and satisfies βR > α > 1 = u on⋃∞
ν=1 ∂∆(ζν ; rν), βR = α > 0 = u on ∂∆(ζ0;R0), and βR > 1 > u on

Ω ∩ ∂∆(ζ0;R). Hence βR > u on (Ω \ ∆(ζ0;R0)) ∩ ∆(ζ0;R). Passing to
the pointwise limit as R → ∞, we get α > u on Ω \ ∆(ζ0;R0). However,
α 6 b < 1 on the set I ⊂ Ω \ ∆(ζ0;R0), so any sequence {ηk} in I with
ηk →∞ in C is an irregular sequence in Ω. �

Lemma 6.3. — Let k be a positive integer, and ρ a positive C∞ function
on C such that Dρ,D2ρ,D3ρ, . . . ,Dkρ are bounded. Then the complete
Kähler metric g ≡ e2ρgC has bounded geometry of order k. In fact, the
pullbacks of g under the local holomorphic charts

Ψz0 : ∆(0; 1)→ ∆(z0; e−ρ(z0))

given by Ψz0 : z 7→ e−ρ(z0)z+z0, for each point z0 ∈ C, have the appropriate
uniformly bounded derivatives.

Proof. — For each point z0 ∈ C, the pullback of the associated (1, 1)-
form ωg ≡ e2ρ i

2dz ∧ dz̄ under Ψz0 is given by

Ψ∗z0
ωg = e2(ρ(Ψz0 )−ρ(z0)) i

2dz ∧ dz̄.

The bound on Dρ gives a Lipschitz constant C for ρ, and hence

e−2C 6 e−2Ce−ρ(z0)
6 e2(ρ(Ψz0 )−ρ(z0)) 6 e2Ce−ρ(z0)

6 e2C .

A similar argument gives uniform bounds on the mth order derivatives of
the functions

{
e2(ρ(Ψz0 )−ρ(z0))

}
z0∈C

for m = 1, . . . , k. �

Proof of Theorem 6.1.

Step 1. — Construction of a suitable irregular hyperbolic region in C.
Let us fix a constant R > 1 and disjoint disks {∆(ζν ;R)}∞ν=0 such that
ζ0 = 0 and ζν →∞ so fast that

∞∑
ν=1

log
[
R−2(|ζν |+R)2]

log
[
R−1e|ζν |(|ζν |+R)(|ζν | − e−|ζν |)

] < 1.
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In particular, by Lemma 6.2, the domain

Ω0 ≡ C \
∞⋃
ν=1

∆(ζν ; e−|ζν |)

is irregular hyperbolic; in fact, there exists an irregular sequence {ηk} in Ω0
such that ηk →∞ in C.

Step 2. Construction of a bounded geometry Kähler metric on a region.
By Lemma 6.3, fixing a positive C∞ function ρ on C such that ρ(z) = |z| on
a neighborhood of C \∆(0; 1), we get a complete Kähler metric g0 ≡ e2ρgC
with bounded geometry of all orders on C and associated local holomorphic
charts

Ψz0 : ∆(0; 1)→ ∆(z0; e−ρ(z0))
given by Ψz0 : z 7→ e−ρ(z0)z + z0 for each point z0 ∈ C. Letting R0 and R1
be constants with 1 < R0 < R1 < R, gH the standard hyperbolic metric on
the upper half plane H, Φ a Möbius transformation with Φ((C \∆(0; 1))∪
{∞}) = H and Im Φ > 5R on (C \ ∆(0;R0)) ∪ {∞}, g1 ≡ Φ∗gH, and
λ : C→ [0, 1] a C∞ function with λ ≡ 0 on a neighborhood of ∆(0;R0) and
λ ≡ 1 on C \∆(0;R1), we get a complete Kähler metric

g2 ≡ λg0 + (1− λ)g1

with bounded geometry of all orders on the region C \ ∆(0; 1). Setting
ξν ≡ 2νR+i2R for each ν = 1, 2, 3, . . . , we get disjoint disks {∆(ξν ;R)}∞ν=1
in { z ∈ H | R < Im z < 3R } (and an isometric isomorphism ∆(ξ1;R) →
∆(ξν ;R) in H given by z 7→ z + 2(ν − 1)R for each ν). We have

∆(0; 1) ∪
∞⋃
ν=1

Φ−1(∆(ξν ;R)) ⊂ ∆(0;R0) b ∆(0;R) b Ω0,

and hence we have a region

Ω1 ≡ Ω0 \

(
∆(0; 1) ∪

∞⋃
ν=1

Φ−1(∆(ξν ; 1))
)
.

Step 3. Construction of the Riemann surface X. — For each ν = 1, 2, 3,
4, . . . , let Tν be a copy of the annulus ∆(0; 1/R,R) ≡ { z ∈ C | 1/R < |z| <
R }, and let

Λν : C→ C and Υν : C∗ → C∗

be the biholomorphisms given by w 7→ e−|ζν |w + ζν and w 7→ 1
w + ξν ,

respectively. We then get a Riemann surface

X ≡

(
Ω1 t

∞⊔
ν=1

Tν

)/
∼,
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where for each ν = 1, 2, 3, . . . , and each w ∈ Tν , z ∈ ∆(ζν ; e−|ζν |, Re−|ζν |)
satisfies

z ∼ w ⇐⇒ z = Λν(w),
and z ∈ Φ−1(∆(ξν ; 1, R)) satisfies

z ∼ w ⇐⇒ Φ(z) = Υν(w).

X is hyperbolic, because for each point z0 ∈ (∂∆(0; 1))\{Φ−1(∞)} ⊂ ∂Ω1,
there exists a barrier β on Ω1 at z0 and a relatively compact neighbor-
hood U of z0 in C such that U \ ∆(0; 1) ⊂ Ω1 and β is equal to −1 on
Ω1 \ U , and thus we may extend β to a continuous subharmonic function
on X that is equal to −1 on X \ (Ω1 ∩ U). Fixing a disk

D b ∆(0;R) ∩ Ω1 ⊂ X,

and letting u : X\D → [0, 1) be the harmonic measure of the ideal boundary
of X with respect to X \D, we see that the restriction u�Ω0\∆(0;R) cannot
approach 1 along the sequence {ηk}, so X must be irregular hyperbolic. It
is easy to see that e(X) = 1.

Step 4. Construction of a bounded geometry Kähler metric on X. —
Let us fix a C∞ function τ on C such that 0 6 τ 6 1, τ ≡ 1 on C\∆(0;R0),
and τ ≡ 0 on ∆(0; 1/R0). Then we get a Kähler metric g on X by setting
g = g2 on

Ω2 ≡ C\

(
∆(0; 1) ∪

∞⋃
ν=1

∆(ζν ;R0e−|ζν |) ∪
∞⋃
ν=1

Φ−1(∆(ξν ;R0))
)
⊂ Ω1 ⊂ X,

and g = τΛ∗νg0 + (1− τ)Υ∗νgH on Tν ⊂ X for each ν = 1, 2, 3, . . . .
For ν = 1, 2, 3, . . . , on Tν we have Λ∗νg0 = e2(|e−|ζν |w+ζν |−|ζν |)gC and

Υ∗νgH = Υ∗1gH (since Υν = Υ1 + 2(ν − 1)R). Therefore, since the functions

w 7→ |e−|ζν |w + ζν | − |ζν | ∈ [−Re−R, Re−R] for ν = 1, 2, 3, . . . ,

have uniformly bounded derivatives of order k on Tν = ∆(0; 1/R,R) for
each k = 0, 1, 2, . . . , (X, g) has bounded geometry of all orders along X\Ω3,
where

Ω3 ≡ C \

(
∆(0; 1) ∪

∞⋃
ν=1

∆(ζν ;R1e−|ζν |) ∪
∞⋃
ν=1

Φ−1(∆(ξν ;R1))
)

⊂ Ω2 ⊂ Ω1 ⊂ X.

There exists a positive constant r0 such that for each point z0 ∈ Ω3 ∩
∆(0;R0), we have

B ≡ BgH(Φ(z0); r0) ⊂ Φ(Ω2 ∩∆(0;R1))
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and g = g1 = Φ∗gH on Φ−1(B) ⊂ Ω2 ∩∆(0;R1). Thus (X, g) has bounded
geometry of all orders along Ω3 ∩ ∆(0;R0), as well as along the compact
set ∆(0;R0, R) ⊂ Ω1.

Finally, if r1 is a constant with 0 < r1 < min(1, R − R1), and z0 ∈
Ω3 \∆(0;R), then

∆(z0; r1e
−ρ(z0)) ∩∆(0;R1) = ∅.

Moreover, if z ∈ ∆(z0; r1e
−ρ(z0)) ∩∆(ζν ;R0e−|ζν |) for some ν, then

R1e
−|ζν | < |z0 − ζν |

< r1e
−|z0| +R0e

−|ζν |

6 (r1e
|ζν−z0| +R0)e−|ζν |

6 (r1e
r1e
−|z0|+R0e

−|ζν | +R0)e−|ζν |

6 (r1e
r1e
−R+R0e

−R
+R0)e−|ζν |.

Thus for r1 sufficiently small, we will have, for every point z0 ∈ Ω3\∆(0;R),

Dz0 ≡ ∆(z0; r1e
−ρ(z0)) ⊂ Ω2 \∆(0;R1),

and in particular, g = g2 = g0 on Dz0 . The resulting family of biholomor-
phisms ∆(0; 1) → Dz0 given by z 7→ r1ze

−|z0| + z0 for each such point z0
then have the required uniform bounds, so (X, g) has bounded geometry of
all orders along Ω3\∆(0;R), and therefore along X itself, and completeness
follows. �

BIBLIOGRAPHY

[1] J. Amorós, M. Burger, K. Corlette, D. Kotschick & D. Toledo, Fundamen-
tal groups of compact Kähler manifolds, Mathematical Surveys and Monographs,
vol. 44, American Mathematical Society, Providence, RI, 1996, xii+140 pages.

[2] A. Andreotti & E. Vesentini, “Carleman estimates for the Laplace-Beltrami
equation on complex manifolds”, Inst. Hautes Études Sci. Publ. Math. (1965),
no. 25, p. 81-130.

[3] D. Arapura, P. Bressler & M. Ramachandran, “On the fundamental group of
a compact Kähler manifold”, Duke Math. J. 68 (1992), no. 3, p. 477-488.

[4] S. Bochner, “Analytic and meromorphic continuation by means of Green’s for-
mula”, Ann. of Math. (2) 44 (1943), p. 652-673.

[5] F. Campana, “Remarques sur le revêtement universel des variétés kählériennes
compactes”, Bull. Soc. Math. France 122 (1994), no. 2, p. 255-284.

[6] S. Y. Cheng & S. T. Yau, “Differential equations on Riemannian manifolds and
their geometric applications”, Comm. Pure Appl. Math. 28 (1975), no. 3, p. 333-
354.

[7] P. Cousin, “Sur les fonctions triplement périodiques de deux variables”, Acta Math.
33 (1910), no. 1, p. 105-232.

ANNALES DE L’INSTITUT FOURIER



THE BOCHNER–HARTOGS DICHOTOMY 269

[8] T. Delzant & M. Gromov, “Cuts in Kähler groups”, in Infinite groups: geometric,
combinatorial and dynamical aspects, Progr. Math., vol. 248, Birkhäuser, Basel,
2005, p. 31-55.

[9] J.-P. Demailly, “Estimations L2 pour l’opérateur ∂̄ d’un fibré vectoriel holomorphe
semi-positif au-dessus d’une variété kählérienne complète”, Ann. Sci. École Norm.
Sup. (4) 15 (1982), no. 3, p. 457-511.

[10] R. Geoghegan, Topological methods in group theory, Graduate Texts in Mathe-
matics, vol. 243, Springer, New York, 2008, xiv+473 pages.

[11] M. Glasner & R. Katz, “Function-theoretic degeneracy criteria for Riemannian
manifolds”, Pacific J. Math. 28 (1969), p. 351-356.

[12] H. Grauert & O. Riemenschneider, “Kählersche Mannigfaltigkeiten mit hyper-
q-konvexem Rand”, in Problems in analysis (Lectures Sympos. in honor of Salomon
Bochner, Princeton Univ., Princeton, N.J., 1969), Princeton Univ. Press, Princeton,
N.J., 1970, p. 61-79.

[13] M. Gromov, “Sur le groupe fondamental d’une variété kählérienne”, C. R. Acad.
Sci. Paris Sér. I Math. 308 (1989), no. 3, p. 67-70.

[14] ———, “Kähler hyperbolicity and L2-Hodge theory”, J. Differential Geom. 33
(1991), no. 1, p. 263-292.

[15] M. Gromov & R. Schoen, “Harmonic maps into singular spaces and p-adic super-
rigidity for lattices in groups of rank one”, Inst. Hautes Études Sci. Publ. Math.
(1992), no. 76, p. 165-246.

[16] F. Hartogs, “Zur Theorie der analytischen Funktionen mehrerer unabhängiger
Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche
nach Potenzen einer Veränderlichen fortschreiten”, Math. Ann. 62 (1906), no. 1,
p. 1-88.

[17] F. R. Harvey & H. B. Lawson, Jr., “On boundaries of complex analytic varieties.
I”, Ann. of Math. (2) 102 (1975), no. 2, p. 223-290.

[18] P. H. Kropholler & M. A. Roller, “Relative ends and duality groups”, J. Pure
Appl. Algebra 61 (1989), no. 2, p. 197-210.

[19] P. Li, “On the structure of complete Kähler manifolds with nonnegative curvature
near infinity”, Invent. Math. 99 (1990), no. 3, p. 579-600.

[20] M. Nakai, “Green potential of Evans type of Royden’s compactification of a Rie-
mann surface”, Nagoya Math. J. 24 (1964), p. 205-239.

[21] T. Napier & M. Ramachandran, “Structure theorems for complete Kähler man-
ifolds and applications to Lefschetz type theorems”, Geom. Funct. Anal. 5 (1995),
no. 5, p. 809-851.

[22] ———, “The Bochner-Hartogs dichotomy for weakly 1-complete Kähler mani-
folds”, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 5, p. 1345-1365.

[23] ———, “The L2 ∂-method, weak Lefschetz theorems, and the topology of Kähler
manifolds”, J. Amer. Math. Soc. 11 (1998), no. 2, p. 375-396.

[24] ———, “Hyperbolic Kähler manifolds and proper holomorphic mappings to Rie-
mann surfaces”, Geom. Funct. Anal. 11 (2001), no. 2, p. 382-406.

[25] ———, “Filtered ends, proper holomorphic mappings of Kähler manifolds to Rie-
mann surfaces, and Kähler groups”, Geom. Funct. Anal. 17 (2008), no. 5, p. 1621-
1654.

[26] ———, “L2 Castelnuovo-de Franchis, the cup product lemma, and filtered ends of
Kähler manifolds”, J. Topol. Anal. 1 (2009), no. 1, p. 29-64.

[27] M. Ramachandran, “A Bochner-Hartogs type theorem for coverings of compact
Kähler manifolds”, Comm. Anal. Geom. 4 (1996), no. 3, p. 333-337.

TOME 66 (2016), FASCICULE 1



270 Terrence NAPIER & Mohan RAMACHANDRAN

[28] L. Sario & M. Nakai, Classification theory of Riemann surfaces, Die Grundlehren
der mathematischen Wissenschaften, Band 164, Springer-Verlag, New York-Berlin,
1970, xx+446 pages.

[29] K. Stein, “Maximale holomorphe und meromorphe Abbildungen. I”, Amer. J.
Math. 85 (1963), p. 298-315.

[30] D. Sullivan, “Growth of positive harmonic functions and Kleinian group limit sets
of zero planar measure and Hausdorff dimension two”, in Geometry Symposium,
Utrecht 1980 (Utrecht, 1980), Lecture Notes in Math., vol. 894, Springer, Berlin-
New York, 1981, p. 127-144.

[31] P. Tworzewski & T. Winiarski, “Continuity of intersection of analytic sets”, Ann.
Polon. Math. 42 (1983), p. 387-393.

Manuscrit reçu le 25 septembre 2014,
révisé le 29 avril 2015,
accepté le 20 mai 2015.

Terrence NAPIER
Department of Mathematics
Lehigh University
Bethlehem, PA 18015 (USA)
tjn2@lehigh.edu
Mohan RAMACHANDRAN
Department of Mathematics
University at Buffalo
Buffalo, NY 14260 (USA)
ramac-m@buffalo.edu

ANNALES DE L’INSTITUT FOURIER

mailto:tjn2@lehigh.edu
mailto:ramac-m@buffalo.edu

	Introduction
	1. Ends and the Bochner–Hartogs property
	2. Bounded geometry
	3. Green's functions and harmonic projections
	4. Quasi-Dirichlet-finite pluriharmonic functions
	5. Proof of the main result and some related results
	6. An irregular hyperbolic example
	Bibliography

