On démontre que la compacité locale, qui est une condition suffisante dans certains théorèmes de J.H.C. Whitehead et de D.E. Cohen sur les produits cartésiens, y est aussi nécessaire.
@article{AIF_1968__18_2_281_0,
author = {Michael, Ernest},
title = {Local compactness and cartesian products of quotient maps and $K$-spaces},
journal = {Annales de l'Institut Fourier},
pages = {281--286},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {18},
number = {2},
year = {1968},
doi = {10.5802/aif.300},
zbl = {0175.19703},
mrnumber = {39 #6256},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.300/}
}
TY - JOUR AU - Michael, Ernest TI - Local compactness and cartesian products of quotient maps and $K$-spaces JO - Annales de l'Institut Fourier PY - 1968 SP - 281 EP - 286 VL - 18 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.300/ DO - 10.5802/aif.300 LA - en ID - AIF_1968__18_2_281_0 ER -
%0 Journal Article %A Michael, Ernest %T Local compactness and cartesian products of quotient maps and $K$-spaces %J Annales de l'Institut Fourier %D 1968 %P 281-286 %V 18 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.300/ %R 10.5802/aif.300 %G en %F AIF_1968__18_2_281_0
Michael, Ernest. Local compactness and cartesian products of quotient maps and $K$-spaces. Annales de l'Institut Fourier, Tome 18 (1968) no. 2, pp. 281-286. doi: 10.5802/aif.300
[1] , Linear s-spaces, Proc. Symp. Convergence Structures, U. of Oklahoma, 1965.
[2] , Topologie Générale, Chapters 1 and 2, 3rd ed., Hermann, 1961. | Zbl
[3] , Spaces with weak topology, Quart. J. Math., Oxford Ser. (2) 5 (1954), 77-80. | Zbl | MR
[4] . Topology of metric complexes, Amer. J. Math., 74 (1952), 555-577. | Zbl | MR
[5] , Spaces in which sequences suffice, Fund. Math., 57 (1965), 107-115. | Zbl | MR
[6] , General Topology, VanNostrand, (1955). | Zbl | MR
[7] , ﬡo-spaces, J. Math. Mech., 15 (1966), 983-1002. | Zbl | MR
[8] , A note on a theorem of Borsuk, Bull. Amer. Math. Soc, 54 (1958), 1125-1132. | Zbl | MR
Cité par Sources :



