Let be a connected complex reductive affine algebraic group, and let be a maximal compact subgroup. Let be a compact connected Kähler manifold whose fundamental group is virtually nilpotent. We prove that the character variety admits a natural strong deformation retraction to the subset . The natural action of on the moduli space of –Higgs bundles over extends to an action of . This produces the above mentioned deformation retraction.
Soit un groupe algébrique affine réductif complexe connexe, et soit un sous-groupe compact maximal. Soit une variété Kählerienne compacte connexe dont le groupe fondamental est virtuellement nilpotent. Nous montrons que la variété de caractères admet une rétraction par déformation forte naturelle sur le sous-ensemble . L’action naturelle de sur l’espace des modules de -fibrés de Higgs sur s’étend à une action de . Ceci produit la rétraction par déformation mentionnée ci-dessus.
Keywords: Kähler group, character variety, $G$–Higgs bundle, virtually nilpotent group
Mot clés : Groupes de Kähler, variété des caractères, $G$-fibrés de Higgs, groupe virtuellement nilpotent
@article{AIF_2015__65_6_2601_0, author = {Biswas, Indranil and Florentino, Carlos}, title = {Character varieties of virtually nilpotent {K\"ahler} groups and $G${{\textendash}Higgs} bundles}, journal = {Annales de l'Institut Fourier}, pages = {2601--2612}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {6}, year = {2015}, doi = {10.5802/aif.2997}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2997/} }
TY - JOUR AU - Biswas, Indranil AU - Florentino, Carlos TI - Character varieties of virtually nilpotent Kähler groups and $G$–Higgs bundles JO - Annales de l'Institut Fourier PY - 2015 SP - 2601 EP - 2612 VL - 65 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2997/ DO - 10.5802/aif.2997 LA - en ID - AIF_2015__65_6_2601_0 ER -
%0 Journal Article %A Biswas, Indranil %A Florentino, Carlos %T Character varieties of virtually nilpotent Kähler groups and $G$–Higgs bundles %J Annales de l'Institut Fourier %D 2015 %P 2601-2612 %V 65 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2997/ %R 10.5802/aif.2997 %G en %F AIF_2015__65_6_2601_0
Biswas, Indranil; Florentino, Carlos. Character varieties of virtually nilpotent Kähler groups and $G$–Higgs bundles. Annales de l'Institut Fourier, Volume 65 (2015) no. 6, pp. 2601-2612. doi : 10.5802/aif.2997. https://aif.centre-mersenne.org/articles/10.5802/aif.2997/
[1] Fundamental groups of compact Kähler manifolds, Mathematical Surveys and Monographs, 44, American Mathematical Society, Providence, RI, 1996, pp. xii+140 | DOI | MR | Zbl
[2] Einstein-Hermitian connections on polystable principal bundles over a compact Kähler manifold, Amer. J. Math., Volume 123 (2001) no. 2, pp. 207-228 | MR | Zbl
[3] The topology of nilpotent representations in reductive groups and their maximal compact subgroups, Geom. Topol., Volume 19 (2015) no. 3, pp. 1383-1407 | DOI | MR
[4] The topology of moduli spaces of group representations: the case of compact surface, Bull. Sci. Math., Volume 135 (2011) no. 4, pp. 395-399 | DOI | MR | Zbl
[5] Commuting elements in reductive groups and Higgs bundles on abelian varieties, J. Algebra, Volume 388 (2013), pp. 194-202 | DOI | MR | Zbl
[6] Connections and Higgs fields on a principal bundle, Ann. Global Anal. Geom., Volume 33 (2008) no. 1, pp. 19-46 | DOI | MR | Zbl
[7] Varieties of group representations and splittings of -manifolds, Ann. of Math. (2), Volume 117 (1983) no. 1, pp. 109-146 | DOI | MR | Zbl
[8] L’invariant de Bieri-Neumann-Strebel des groupes fondamentaux des variétés kählériennes, Math. Ann., Volume 348 (2010) no. 1, pp. 119-125 | DOI | MR | Zbl
[9] Infinite determinants, stable bundles and curvature, Duke Math. J., Volume 54 (1987) no. 1, pp. 231-247 | DOI | MR | Zbl
[10] The topology of moduli spaces of free group representations, Math. Ann., Volume 345 (2009) no. 2, pp. 453-489 | DOI | MR | Zbl
[11] Character varieties and moduli of quiver representations, In the tradition of Ahlfors-Bers. VI (Contemp. Math.), Volume 590, Amer. Math. Soc., Providence, RI, 2013, pp. 9-38 | DOI | MR
[12] Topology of character varieties of Abelian groups, Topology Appl., Volume 173 (2014), pp. 32-58 | DOI | MR | Zbl
[13] Higgs bundles over elliptic curves for complex reductive Lie groups (http://arxiv.org/abs/1310.2168) | MR
[14] Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial, Comm. Math. Phys., Volume 255 (2005) no. 3, pp. 577-627 | DOI | MR | Zbl
[15] The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3), Volume 55 (1987) no. 1, pp. 59-126 | DOI | MR | Zbl
[16] Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975, pp. xiv+247 (Graduate Texts in Mathematics, No. 21) | MR | Zbl
[17] Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2), Volume 82 (1965), pp. 540-567 | MR | Zbl
[18] Commuting tuples in reductive groups and their maximal compact subgroups, Geom. Topol., Volume 17 (2013) no. 5, pp. 2513-2593 | DOI | MR
[19] Einstein-Hermitian connections on principal bundles and stability, J. Reine Angew. Math., Volume 390 (1988), pp. 21-31 | MR | Zbl
[20] Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. (1992) no. 75, pp. 5-95 | Numdam | MR | Zbl
[21] On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math., Volume 39 (1986) no. S, suppl., p. S257-S293 Frontiers of the mathematical sciences: 1985 (New York, 1985) | DOI | MR | Zbl
Cited by Sources: