Jet schemes and invariant theory
Annales de l'Institut Fourier, Volume 65 (2015) no. 6, pp. 2571-2599.

Let G be a complex reductive group and V a G-module. Then the mth jet scheme G m acts on the mth jet scheme V m for all m0. We are interested in the invariant ring 𝒪(V m ) G m and whether the map p m * :𝒪((V//G) m )𝒪(V m ) G m induced by the categorical quotient map p:VV//G is an isomorphism, surjective, or neither. Using Luna’s slice theorem, we give criteria for p m * to be an isomorphism for all m, and we prove this when G=SL n , GL n , SO n , or Sp 2n and V is a sum of copies of the standard module and its dual, such that V//G is smooth or a complete intersection. We classify all representations of * for which p * is surjective or an isomorphism. Finally, we give examples where p m * is surjective for m= but not for finite m, and where it is surjective but not injective.

Soient G un groupe réductif complexe et V un G-module. Alors G m , le schéma des jets d’ordre m de G, opère dans V m , le schéma des jets d’ordre m de V, pour tout m0. Nous nous intéressons à l’anneau des invariants 𝒪(V m ) G m et au morphisme p m * :𝒪((V//G) m )𝒪(V m ) G m induit par le morphisme du quotient catégorique p:VV//G  : ce morphisme est-il un isomorphisme, surjectif, ou non ? En utilisant le théorème du slice de Luna, nous obtenons des critères pour que p m * soit un isomorphisme pour tout m. Nous montrons que c’est bien le cas lorsque G=SL n , GL n , SO n , ou Sp 2n et V est un somme directe de copies du module standard et de son dual, pourvu que V//G soit lisse ou une intersection complète. Nous classifions toutes les représentations de * telles que p * soit surjectif ou un isomorphisme. Enfin, nous donnons des exemples où p m * est surjectif pour m= mais non surjectif pour m fini, et d’autres exemples où p m * est surjectif mais non injectif.

DOI: 10.5802/aif.2996
Classification: 13A50, 14L24, 14L30
Keywords: jet schemes, classical invariant theory
Linshaw, Andrew R. 1; Schwarz, Gerald W. 2; Song, Bailin 3

1 Department of Mathematics University of Denver 2280 S. Vine St. Denver, CO 80208 (USA)
2 Department of Mathematics Brandeis University 415 South Street Waltham, MA 02453 (USA)
3 School of Mathematical Sciences University of Science and Technology of China No. 96 Jinzhai Road Hefei, Anhui Province, 230026 (P. R. China)
     author = {Linshaw, Andrew R. and Schwarz, Gerald W. and Song, Bailin},
     title = {Jet schemes and invariant theory},
     journal = {Annales de l'Institut Fourier},
     pages = {2571--2599},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {65},
     number = {6},
     year = {2015},
     doi = {10.5802/aif.2996},
     zbl = {1342.13009},
     language = {en},
     url = {}
AU  - Linshaw, Andrew R.
AU  - Schwarz, Gerald W.
AU  - Song, Bailin
TI  - Jet schemes and invariant theory
JO  - Annales de l'Institut Fourier
PY  - 2015
SP  - 2571
EP  - 2599
VL  - 65
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  -
UR  -
UR  -
DO  - 10.5802/aif.2996
LA  - en
ID  - AIF_2015__65_6_2571_0
ER  - 
%0 Journal Article
%A Linshaw, Andrew R.
%A Schwarz, Gerald W.
%A Song, Bailin
%T Jet schemes and invariant theory
%J Annales de l'Institut Fourier
%D 2015
%P 2571-2599
%V 65
%N 6
%I Association des Annales de l’institut Fourier
%R 10.5802/aif.2996
%G en
%F AIF_2015__65_6_2571_0
Linshaw, Andrew R.; Schwarz, Gerald W.; Song, Bailin. Jet schemes and invariant theory. Annales de l'Institut Fourier, Volume 65 (2015) no. 6, pp. 2571-2599. doi : 10.5802/aif.2996.

[1] Batyrev, Victor V. Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), World Sci. Publ., River Edge, NJ, 1998, pp. 1-32 | MR | Zbl

[2] Beilinson, Alexander; Drinfeld, Vladimir Chiral algebras, American Mathematical Society Colloquium Publications, 51, American Mathematical Society, Providence, RI, 2004, pp. vi+375 | MR | Zbl

[3] Borcherds, Richard E. Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A., Volume 83 (1986) no. 10, pp. 3068-3071 | DOI | MR | Zbl

[4] Boutot, Jean-François Singularités rationnelles et quotients par les groupes réductifs, Invent. Math., Volume 88 (1987) no. 1, pp. 65-68 | DOI | MR | Zbl

[5] Craw, Alastair An introduction to motivic integration, Strings and geometry (Clay Math. Proc.), Volume 3, Amer. Math. Soc., Providence, RI, 2004, pp. 203-225 | MR | Zbl

[6] Denef, Jan; Loeser, François Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., Volume 135 (1999) no. 1, pp. 201-232 | DOI | MR | Zbl

[7] Denef, Jan; Loeser, François Geometry on arc spaces of algebraic varieties, European Congress of Mathematics, Vol. I (Barcelona, 2000) (Progr. Math.), Volume 201, Birkhäuser, Basel, 2001, pp. 327-348 | MR | Zbl

[8] Eck, David Invariants of k-jet actions, Houston J. Math., Volume 10 (1984) no. 2, pp. 159-168 | MR | Zbl

[9] Ein, Lawrence; Mustaţă, Mircea Jet schemes and singularities, Algebraic geometry—Seattle 2005. Part 2 (Proc. Sympos. Pure Math.), Volume 80, Amer. Math. Soc., Providence, RI, 2009, pp. 505-546 | DOI | MR | Zbl

[10] Frenkel, Edward; Ben-Zvi, David Vertex algebras and algebraic curves, Mathematical Surveys and Monographs, 88, American Mathematical Society, Providence, RI, 2001, pp. xii+348 | DOI | MR | Zbl

[11] Frenkel, Igor; Lepowsky, James; Meurman, Arne Vertex operator algebras and the Monster, Pure and Applied Mathematics, 134, Academic Press, Inc., Boston, MA, 1988, pp. liv+508 | MR | Zbl

[12] Ishii, Shihoko; Kollár, János The Nash problem on arc families of singularities, Duke Math. J., Volume 120 (2003) no. 3, pp. 601-620 | DOI | MR | Zbl

[13] Kac, Victor Vertex algebras for beginners, University Lecture Series, 10, American Mathematical Society, Providence, RI, 1998, pp. vi+201 | MR | Zbl

[14] Kolchin, E. R. Differential algebra and algebraic groups, Academic Press, New York-London, 1973, pp. xviii+446 (Pure and Applied Mathematics, Vol. 54) | MR | Zbl

[15] Kontsevich, M. String cohomology, 1995 (Lecture at Orsay)

[16] Kraft, Hanspeter Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1, Friedr. Vieweg & Sohn, Braunschweig, 1984, pp. x+308 | DOI | MR | Zbl

[17] Linshaw, Andrew R.; Schwarz, Gerald W.; Song, Bailin Arc spaces and the vertex algebra commutant problem, Adv. Math., Volume 277 (2015), pp. 338-364 | DOI | MR

[18] Looijenga, Eduard Motivic measures, Astérisque (2002) no. 276, pp. 267-297 (Séminaire Bourbaki, Vol. 1999/2000) | Numdam | MR | Zbl

[19] Luna, Domingo Slices étales, Sur les groupes algébriques, Soc. Math. France, Paris, 1973, p. 81-105. Bull. Soc. Math. France, Paris, Mémoire 33 | Numdam | MR | Zbl

[20] Malikov, Fyodor; Schechtman, Vadim Chiral de Rham complex. II, Differential topology, infinite-dimensional Lie algebras, and applications (Amer. Math. Soc. Transl. Ser. 2), Volume 194, Amer. Math. Soc., Providence, RI, 1999, pp. 149-188 | MR | Zbl

[21] Malikov, Fyodor; Schechtman, Vadim; Vaintrob, Arkady Chiral de Rham complex, Comm. Math. Phys., Volume 204 (1999) no. 2, pp. 439-473 | DOI | MR | Zbl

[22] Mustaţă, Mircea Jet schemes of locally complete intersection canonical singularities, Invent. Math., Volume 145 (2001) no. 3, pp. 397-424 (With an appendix by David Eisenbud and Edward Frenkel) | DOI | MR | Zbl

[23] Nash, John F. Jr. Arc structure of singularities, Duke Math. J., Volume 81 (1995) no. 1, p. 31-38 (1996) (A celebration of John F. Nash, Jr.) | DOI | MR | Zbl

[24] Schwarz, Gerald W. Representations of simple Lie groups with regular rings of invariants, Invent. Math., Volume 49 (1978) no. 2, pp. 167-191 | DOI | MR | Zbl

[25] Song, Bailin The global sections of the chiral de Rham complex on a Kummer surface (

[26] Veys, Willem Arc spaces, motivic integration and stringy invariants, Singularity theory and its applications (Adv. Stud. Pure Math.), Volume 43, Math. Soc. Japan, Tokyo, 2006, pp. 529-572 | MR | Zbl

[27] Weyl, Hermann The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, N.J., 1939, pp. xii+302 | MR | Zbl

Cited by Sources: