Curves in quadric and cubic surfaces whose complements are Kobayashi hyperbolically imbedded
Annales de l'Institut Fourier, Volume 65 (2015) no. 5, pp. 2057-2068.

We construct smooth irreducible curves of the lowest possible degrees in quadric and cubic surfaces whose complements are Kobayashi hyperbolically imbedded into those surfaces. Moreover we characterize line bundles on quadric and cubic surfaces such that the complete linear systems of the line bundles have a smooth irreducible curve whose complement is Kobayashi hyperbolically imbedded into those surfaces.

Nous construisons des courbes complexes lisses de degré minimal possible dans des surfaces quadriques et cubiques à complémentaire hyperboliquement plongé, au sens de Kobayashi. De plus, nous caractérisons les fibrés en droites sur de telles surfaces dont les systèmes linéaires associés possèdent des courbes lisses à complémentaire hyperboliquement plongé.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.2982
Classification: 32Q45,  14J26
Keywords: Kobayashi hyperbolic imbedding, holomorphic map
@article{AIF_2015__65_5_2057_0,
     author = {Ito, Atsushi and Tiba, Yusaku},
     title = {Curves in quadric and cubic surfaces whose complements are {Kobayashi} hyperbolically imbedded},
     journal = {Annales de l'Institut Fourier},
     pages = {2057--2068},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {65},
     number = {5},
     year = {2015},
     doi = {10.5802/aif.2982},
     zbl = {06541628},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2982/}
}
TY  - JOUR
TI  - Curves in quadric and cubic surfaces whose complements are Kobayashi hyperbolically imbedded
JO  - Annales de l'Institut Fourier
PY  - 2015
DA  - 2015///
SP  - 2057
EP  - 2068
VL  - 65
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2982/
UR  - https://zbmath.org/?q=an%3A06541628
UR  - https://doi.org/10.5802/aif.2982
DO  - 10.5802/aif.2982
LA  - en
ID  - AIF_2015__65_5_2057_0
ER  - 
%0 Journal Article
%T Curves in quadric and cubic surfaces whose complements are Kobayashi hyperbolically imbedded
%J Annales de l'Institut Fourier
%D 2015
%P 2057-2068
%V 65
%N 5
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2982
%R 10.5802/aif.2982
%G en
%F AIF_2015__65_5_2057_0
Ito, Atsushi; Tiba, Yusaku. Curves in quadric and cubic surfaces whose complements are Kobayashi hyperbolically imbedded. Annales de l'Institut Fourier, Volume 65 (2015) no. 5, pp. 2057-2068. doi : 10.5802/aif.2982. https://aif.centre-mersenne.org/articles/10.5802/aif.2982/

[1] Beauville, Arnaud Complex algebraic surfaces, London Mathematical Society Student Texts, Tome 34, Cambridge University Press, Cambridge, 1996, x+132 pages (Translated from the 1978 French original by R. Barlow, with assistance from N. I. Shepherd-Barron and M. Reid) | Article | Zbl: 0849.14014

[2] Ciliberto, C.; Zaidenberg, M. Scrolls and hyperbolicity, Internat. J. Math., Tome 24 (2013) no. 4, 1350026, 25 pages | Article | Zbl: 1270.14027

[3] Corvaja, Pietro; Noguchi, Junjiro A new unicity theorem and Erdös’ problem for polarized semi-abelian varieties, Math. Ann., Tome 353 (2012) no. 2, pp. 439-464 | Article

[4] Demailly, Jean-Pierre; El Goul, Jawher Hyperbolicity of generic surfaces of high degree in projective 3-space, Amer. J. Math., Tome 122 (2000) no. 3, pp. 515-546 http://muse.jhu.edu/journals/american_journal_of_mathematics/v122/122.3demailly.pdf | Zbl: 0966.32014

[5] Di Rocco, Sandra k-very ample line bundles on del Pezzo surfaces, Math. Nachr., Tome 179 (1996), pp. 47-56 | Article | Zbl: 0870.14031

[6] Dolgachev, Igor V. Classical algebraic geometry, Cambridge University Press, Cambridge, 2012, xii+639 pages (A modern view) | Article | Zbl: 1252.14001

[7] Duval, Julien Une sextique hyperbolique dans P 3 (C), Math. Ann., Tome 330 (2004) no. 3, pp. 473-476 | Article | Zbl: 1071.14045

[8] El Goul, Jawher Logarithmic jets and hyperbolicity, Osaka J. Math., Tome 40 (2003) no. 2, pp. 469-491 http://projecteuclid.org/euclid.ojm/1153493095 | Zbl: 1048.32016

[9] Fujimoto, Hirotaka Extensions of the big Picard’s theorem, Tôhoku Math. J. (2), Tome 24 (1972), pp. 415-422 | Zbl: 0244.32011

[10] Fujimoto, Hirotaka On holomorphic maps into a taut complex space, Nagoya Math. J., Tome 46 (1972), pp. 49-61 | Zbl: 0231.32002

[11] Green, Mark L. Holomorphic maps into complex projective space omitting hyperplanes, Trans. Amer. Math. Soc., Tome 169 (1972), pp. 89-103 | Zbl: 0256.32015

[12] Hartshorne, Robin Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977, xvi+496 pages (Graduate Texts in Mathematics, No. 52) | Zbl: 0531.14001

[13] Kobayashi, Shoshichi Invariant distances on complex manifolds and holomorphic mappings, J. Math. Soc. Japan, Tome 19 (1967), pp. 460-480 | Zbl: 0158.33201

[14] Kobayashi, Shoshichi Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, Tome 2, Marcel Dekker, Inc., New York, 1970, ix+148 pages | Zbl: 0207.37902

[15] Manin, Yu. I. Cubic forms: algebra, geometry, arithmetic, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, 1974, vii+292 pages (Translated from the Russian by M. Hazewinkel, North-Holland Mathematical Library, Vol. 4) | Zbl: 0277.14014

[16] Masuda, Kazuo; Noguchi, Junjiro A construction of hyperbolic hypersurface of P n (C), Math. Ann., Tome 304 (1996) no. 2, pp. 339-362 | Article | Zbl: 0844.32018

[17] McQuillan, M. Holomorphic curves on hyperplane sections of 3-folds, Geom. Funct. Anal., Tome 9 (1999) no. 2, pp. 370-392 | Article | Zbl: 0951.14014

[18] Noguchi, Junjiro Holomorphic curves in algebraic varieties, Hiroshima Math. J., Tome 7 (1977) no. 3, pp. 833-853 | Zbl: 0412.32025

[19] Noguchi, Junjiro Lemma on logarithmic derivatives and holomorphic curves in algebraic varieties, Nagoya Math. J., Tome 83 (1981), pp. 213-233 http://projecteuclid.org/euclid.nmj/1118786486 | Zbl: 0429.32003

[20] Noguchi, Junjiro; Ochiai, Takushiro Geometric function theory in several complex variables, Translations of Mathematical Monographs, Tome 80, American Mathematical Society, Providence, RI, 1990, xii+283 pages (Translated from the Japanese by Noguchi) | Zbl: 0713.32001

[21] Păun, Mihai Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity, Math. Ann., Tome 340 (2008) no. 4, pp. 875-892 | Article | Zbl: 1137.32010

[22] Rousseau, Erwan Logarithmic vector fields and hyperbolicity, Nagoya Math. J., Tome 195 (2009), pp. 21-40 http://projecteuclid.org/euclid.nmj/1252934369 | Zbl: 1189.32015

[23] Siu, Yum-Tong; Yeung, Sai-kee Hyperbolicity of the complement of a generic smooth curve of high degree in the complex projective plane, Invent. Math., Tome 124 (1996) no. 1-3, pp. 573-618 | Article | Zbl: 0856.32017

[24] Tiba, Yusaku Kobayashi hyperbolic imbeddings into toric varieties, Math. Ann., Tome 355 (2013) no. 3, pp. 879-892 | Article | Zbl: 1277.32025

[25] Zaĭdenberg, M.; Shiffman, B. New examples of Kobayashi hyperbolic surfaces in P 3 , Funktsional. Anal. i Prilozhen., Tome 39 (2005) no. 1, pp. 90-94 | Article | Zbl: 1095.32009

[26] Zaĭdenberg, M. G. Stability of hyperbolic embeddedness and the construction of examples, Mat. Sb. (N.S.), Tome 135(177) (1988) no. 3, p. 361-372, 415 | Zbl: 0641.32016

Cited by Sources: