Permanence of approximation properties for discrete quantum groups
Annales de l'Institut Fourier, Volume 65 (2015) no. 4, pp. 1437-1467.

We prove several results on the permanence of weak amenability and the Haagerup property for discrete quantum groups. In particular, we improve known facts on free products by allowing amalgamation over a finite quantum subgroup. We also define a notion of relative amenability for discrete quantum groups and link it with amenable equivalence of von Neumann algebras, giving additional permanence properties.

Nous prouvons plusieurs résultats concernant la permanence de la moyennabilité faible et de la propriété de Haagerup pour les groupes quantiques discrets. En particulier, nous améliorons des résultats connus sur les produits libres en autorisant l’amalgamation sur un sous-groupe quantique fini. Nous définissons également une notion de moyennabilité relative pour les groupes quantiques discrets et nous la relions à l’équivalence moyennable d’algèbres de von Neumann, ce qui donne de nouvelles propriétés de permanence.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.2963
Classification: 20G42,  46L65
Keywords: Quantum groups, approximation properties, relative amenability
@article{AIF_2015__65_4_1437_0,
     author = {Freslon, Amaury},
     title = {Permanence of approximation properties for discrete quantum groups},
     journal = {Annales de l'Institut Fourier},
     pages = {1437--1467},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {65},
     number = {4},
     year = {2015},
     doi = {10.5802/aif.2963},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2963/}
}
TY  - JOUR
TI  - Permanence of approximation properties for discrete quantum groups
JO  - Annales de l'Institut Fourier
PY  - 2015
DA  - 2015///
SP  - 1437
EP  - 1467
VL  - 65
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2963/
UR  - https://doi.org/10.5802/aif.2963
DO  - 10.5802/aif.2963
LA  - en
ID  - AIF_2015__65_4_1437_0
ER  - 
%0 Journal Article
%T Permanence of approximation properties for discrete quantum groups
%J Annales de l'Institut Fourier
%D 2015
%P 1437-1467
%V 65
%N 4
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2963
%R 10.5802/aif.2963
%G en
%F AIF_2015__65_4_1437_0
Freslon, Amaury. Permanence of approximation properties for discrete quantum groups. Annales de l'Institut Fourier, Volume 65 (2015) no. 4, pp. 1437-1467. doi : 10.5802/aif.2963. https://aif.centre-mersenne.org/articles/10.5802/aif.2963/

[1] Anantharaman-Delaroche, C. Action moyennable d’un groupe localement compact sur une algèbre de von Neumann, Math. Scand, Tome 45 (1979), pp. 289-304 | MR: 580607 | Zbl: 0438.46046

[2] Anantharaman-Delaroche, C. Amenable correspondences and approximation properties for von Neumann algebras, Pacific J. Math., Tome 171 (1995) no. 2, pp. 309-341 | Article | MR: 1372231 | Zbl: 0892.22004

[3] Baaj, S.; Skandalis, G. Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres, Ann. Sci. École Norm. Sup., Tome 26 (1993) no. 4, pp. 425-488 | Numdam | MR: 1235438 | Zbl: 0804.46078

[4] Banica, T. Le groupe quantique compact libre U(n), Comm. Math. Phys., Tome 190 (1997) no. 1, pp. 143-172 | Article | MR: 1484551 | Zbl: 0906.17009

[5] Banica, T. Symmetries of a generic coaction, Math. Ann., Tome 314 (1999) no. 4, pp. 763-780 | Article | MR: 1709109 | Zbl: 0928.46038

[6] Bannon, J.P.; Fang, J. Some remarks on Haagerup’s approximation property, J. Operator Theory, Tome 65 (2011) no. 2, pp. 403-417 | MR: 2785851 | Zbl: 1240.46088

[7] Bédos, E.; Conti, R.; Tuset, L. On amenability and co-amenability of algebraic quantum groups and their corepresentations, Canad. J. Math., Tome 57 (2005) no. 1, pp. 17-60 | Article | MR: 2113848 | Zbl: 1068.46043

[8] Boca, F. On the method of constructing irreducible finite index subfactors of Popa, Pacific J. Math., Tome 161 (1993) no. 2, pp. 201-231 | Article | MR: 1242197 | Zbl: 0795.46044

[9] Bożejko, M.; Picardello, M.A. Weakly amenable groups and amalgamated products, Proc. Amer. Math. Soc., Tome 117 (1993) no. 4, pp. 1039-1046 | Article | MR: 1119263 | Zbl: 0780.43002

[10] Brannan, M. Approximation properties for free orthogonal and free unitary quantum groups, J. Reine Angew. Math., Tome 672 (2012), pp. 223-251 | MR: 2995437 | Zbl: 1262.46048

[11] Brown, Nathanial P.; Ozawa, Narutaka C * -algebras and finite-dimensional approximations, Graduate Studies in Mathematics, Tome 88, American Mathematical Society, Providence, RI, 2008, xvi+509 pages | Article | MR: 2391387 | Zbl: 1160.46001

[12] Connes, A.; Jones, V.F.R. Property T for von Neumann algebras, Bull. London Math. Soc., Tome 17 (1985) no. 1, pp. 57-62 | Article | MR: 766450 | Zbl: 1190.46047

[13] Cowling, M.; Haagerup, U. Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math., Tome 96 (1989) no. 3, pp. 507-549 | Article | MR: 996553 | Zbl: 0681.43012

[14] Daws, M.; Fima, P.; Skalski, A.; White, S. The Haagerup property for locally compact quantum groups (2014) (http://arxiv.org/abs/1303.3261, to appear in J. Reine Angew. Math.)

[15] Daws, Matthew Completely positive multipliers of quantum groups, Internat. J. Math., Tome 23 (2012) no. 12, 1250132, 23 pages | Article | MR: 3019431 | Zbl: 1282.43002

[16] De Commer, K.; Freslon, A.; Yamashita, M. CCAP for universal discrete quantum groups, Comm. Math. Phys., Tome 331 (2014) no. 2, pp. 677-701 | Article | MR: 3238527

[17] Eymard, P. Moyennes invariantes et représentations unitaires, Lecture notes in mathematics, Tome 300, Springer, 1972 | MR: 447969 | Zbl: 0249.43004

[18] Fima, P. Kazhdan’s property T for discrete quantum groups, Internat. J. Math., Tome 21 (2010) no. 1, pp. 47-65 | Article | MR: 2642986 | Zbl: 1195.46072

[19] Fima, P. K-amenability of HNN extensions of amenable discrete quantum groups, J. Funct. Anal., Tome 265 (2013) no. 4, pp. 507-519 | Article | MR: 3062534

[20] Fima, P.; Freslon, A. Graphs of quantum groups and K-amenability, Adv. Math., Tome 260 (2014), pp. 233-280 | Article | MR: 3209353 | Zbl: 1297.46048

[21] Freslon, A. A note on weak amenability for free products of discrete quantum groups, C. R. Acad. Sci. Paris Sér. I Math., Tome 350 (2012), pp. 403-406 | Article | MR: 2922092 | Zbl: 1252.46058

[22] Freslon, A. Examples of weakly amenable discrete quantum groups, J. Funct. Anal., Tome 265 (2013) no. 9, pp. 2164-2187 | Article | MR: 3084500

[23] Freslon, A. Propriétés d’approximation pour les groupes quantiques discrets (2013) (Ph. D. Thesis)

[24] Freslon, A. Fusion (semi)rings arising from quantum groups, J. Algebra, Tome 417 (2014), pp. 161-197 | Article | MR: 3244644

[25] Joita, M.; Petrescu, S. Amenable actions of Katz algebras on von Neumann algebras, Rev. Roumaine Math. Pures Appl., Tome 35 (1990) no. 2, pp. 151-160 | MR: 1076787 | Zbl: 0742.46041

[26] Joita, M.; Petrescu, S. Property (T) for Kac algebras, Rev. Roumaine Math. Pures Appl., Tome 37 (1992) no. 2, pp. 163-178 | MR: 1171192 | Zbl: 0785.46058

[27] Kraus, J.; Ruan, Z-J. Approximation properties for Kac algebras, Indiana Univ. Math. J., Tome 48 (1999) no. 2, pp. 469-535 | Article | MR: 1722805 | Zbl: 0945.46038

[28] Lemeux, F. Fusion rules for some free wreath product quantum groups and applications, J. Funct. Anal., Tome 267 (2014) no. 7, pp. 2507-2550 | Article | MR: 3250372

[29] Monod, N.; Popa, S. On co-amenability for groups and von Neumann algebras, C. R. Math. Acad. Sci. Soc. R. Can., Tome 25 (2003) no. 3, pp. 82-87 | MR: 1999183 | Zbl: 1040.43001

[30] Pestov, V. On some questions of Eymard and Bekka concerning amenability of homogeneous spaces and induced representations, C. R. Math. Acad. Sci. Soc. R. Can., Tome 25 (2003) no. 3, pp. 76-81 | MR: 1999182 | Zbl: 1092.43003

[31] Ricard, E.; Xu, Q. Khintchine type inequalities for reduced free products and applications, J. Reine Angew. Math., Tome 599 (2006), pp. 27-59 | MR: 2279097 | Zbl: 1170.46052

[32] Rieffel, M.A. Morita equivalence for C*-algebras and W*-algebras, J. Pure Appl. Algebra, Tome 5 (1974) no. 1, pp. 51-96 | Article | MR: 367670 | Zbl: 0295.46099

[33] Timmermann, T. An invitation to quantum groups and duality. From Hopf algebras to multiplicative unitaries and beyond, EMS, 2008 | MR: 2397671 | Zbl: 1162.46001

[34] Tomatsu, R. Amenable discrete quantum groups, J. Math. Soc. Japan, Tome 58 (2006) no. 4, pp. 949-964 | Article | MR: 2276175 | Zbl: 1129.46061

[35] Tomiyama, J. On tensor products of von Neumann algebras, Pacific J. Math., Tome 30 (1969) no. 1, pp. 263-270 | Article | MR: 246141 | Zbl: 0176.44002

[36] Vaes, S. The unitary implementation of a locally compact quantum group action, J. Funct. Anal., Tome 180 (2001) no. 2, pp. 426-480 | Article | MR: 1814995 | Zbl: 1011.46058

[37] Vaes, S. A new approach to induction and imprimitivity results, J. Funct. Anal., Tome 229 (2005) no. 2, pp. 317-374 | Article | MR: 2182592 | Zbl: 1087.22005

[38] Vaes, S.; Vergnioux, R. The boundary of universal discrete quantum groups, exactness and factoriality, Duke Math. J., Tome 140 (2007) no. 1, pp. 35-84 | Article | MR: 2355067 | Zbl: 1129.46062

[39] Vergnioux, R. K-amenability for amalgamated free products of amenable discrete quantum groups, J. Funct. Anal., Tome 212 (2004) no. 1, pp. 206-221 | Article | MR: 2067164 | Zbl: 1064.46064

[40] Vergnioux, R.; Voigt, C. The K-theory of free quantum groups, Math. Ann., Tome 357 (2013) no. 1, pp. 355-400 | Article | MR: 3084350 | Zbl: 1284.46063

[41] Wang, S. Free products of compact quantum groups, Comm. Math. Phys., Tome 167 (1995) no. 3, pp. 671-692 | Article | MR: 1316765 | Zbl: 0838.46057

[42] Wang, S. Tensor products and crossed-products of compact quantum groups, Proc. London Math. Soc., Tome 71 (1995) no. 3, pp. 695-720 | Article | MR: 1347410 | Zbl: 0837.46052

[43] Woronowicz, S.L. Compact quantum groups, Symétries quantiques (Les Houches, 1995) (1998), pp. 845-884 | MR: 1616348 | Zbl: 0997.46045

[44] Wu, JinSong Co-amenability and Connes’s embedding problem, Sci. China Math., Tome 55 (2012) no. 5, pp. 977-984 | Article | MR: 2912489 | Zbl: 1262.46042

[45] Zimmer, R.J. Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Funct. Anal., Tome 27 (1978) no. 3, pp. 350-372 | Article | MR: 473096 | Zbl: 0391.28011

Cited by Sources: