Bar complexes and extensions of classical exponential functors
Annales de l'Institut Fourier, Volume 64 (2014) no. 6, pp. 2563-2637.

We compute Ext-groups between classical exponential functors (i.e. symmetric, exterior or divided powers) and their Frobenius twists. Our method relies on bar constructions, and bridges these Ext-groups with the homology of Eilenberg-Mac Lane spaces.

This article completes earlier results of the author, and provides an alternative approach to classical Ext-computations in the category of strict polynomial functors over fields. We also obtain significant Ext-computations for strict polynomial functors over the integers.

Nous calculons les groupes d’Ext entre foncteurs exponentiels classiques (i.e. puissances symétriques, extérieures ou divisées), et leur précomposition par le foncteur de torsion de Frobenius. Notre méthode repose sur les constructions bar, et relie ces calculs d’Ext avec l’homologie des espaces d’Eilenberg et Mac Lane.

Cet article complète des résultats précédents de l’auteur, et fournit une approche alternative aux calculs d’Ext classiques dans la catégorie des foncteurs strictement polynomiaux sur un corps. Nous obtenons aussi des calculs d’Ext notables pour les foncteurs strictement polynomiaux sur les entiers.

DOI: 10.5802/aif.2921
Classification: 18G15, 57T30, 20G10
Keywords: Strict polynomial functors, extensions, bar complexes, Eilenberg-Mac Lane spaces, Frobenius twist
Mot clés : foncteurs strictement polynomiaux, extensions, complexes bar, espaces d’Eilenberg-Mac Lane, torsion de Frobenius

Touzé, Antoine 1

1 Université Paris 13 Sorbonne Paris Cité, LAGA, CNRS, UMR 7539, F-93430, Villetaneuse (France)
@article{AIF_2014__64_6_2563_0,
     author = {Touz\'e, Antoine},
     title = {Bar complexes and extensions of classical exponential functors},
     journal = {Annales de l'Institut Fourier},
     pages = {2563--2637},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {64},
     number = {6},
     year = {2014},
     doi = {10.5802/aif.2921},
     mrnumber = {3331175},
     zbl = {06387348},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2921/}
}
TY  - JOUR
AU  - Touzé, Antoine
TI  - Bar complexes and extensions of classical exponential functors
JO  - Annales de l'Institut Fourier
PY  - 2014
SP  - 2563
EP  - 2637
VL  - 64
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2921/
DO  - 10.5802/aif.2921
LA  - en
ID  - AIF_2014__64_6_2563_0
ER  - 
%0 Journal Article
%A Touzé, Antoine
%T Bar complexes and extensions of classical exponential functors
%J Annales de l'Institut Fourier
%D 2014
%P 2563-2637
%V 64
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2921/
%R 10.5802/aif.2921
%G en
%F AIF_2014__64_6_2563_0
Touzé, Antoine. Bar complexes and extensions of classical exponential functors. Annales de l'Institut Fourier, Volume 64 (2014) no. 6, pp. 2563-2637. doi : 10.5802/aif.2921. https://aif.centre-mersenne.org/articles/10.5802/aif.2921/

[1] Akin, Kaan Extensions of symmetric tensors by alternating tensors, J. Algebra, Volume 121 (1989) no. 2, pp. 358-363 | DOI | MR | Zbl

[2] Breen, L.; Mikhailov, R.; Touzé, A. Derived functors of the divided powers (ArXiv:1312.5676)

[3] Brown, Kenneth S. Cohomology of groups, Graduate Texts in Mathematics, 87, Springer-Verlag, New York-Berlin, 1982, pp. x+306 | MR | Zbl

[4] Cartan, H. Algèbres d’Eilenberg Mac Lane et homotopie, Séminaire Henri Cartan de l’École Normale supérieure, 1954/1955, Secrétariat mathématique, 11 rue Pierre Curie, Paris, 1955 (French) (Available online on www.numdam.org) | Zbl

[5] Chałupnik, Marcin Koszul duality and extensions of exponential functors, Adv. Math., Volume 218 (2008) no. 3, pp. 969-982 | DOI | MR | Zbl

[6] Cline, E.; Parshall, B.; Scott, L.; van der Kallen, Wilberd Rational and generic cohomology, Invent. Math., Volume 39 (1977) no. 2, pp. 143-163 | DOI | MR | Zbl

[7] Dold, Albrecht; Puppe, Dieter Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier Grenoble, Volume 11 (1961), pp. 201-312 | DOI | Numdam | MR | Zbl

[8] Eilenberg, Samuel; Mac Lane, Saunders On the groups of H(Π,n). I, Ann. of Math. (2), Volume 58 (1953), pp. 55-106 | DOI | MR | Zbl

[9] Eisenbud, David Commutative algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995, pp. xvi+785 (With a view toward algebraic geometry) | MR | Zbl

[10] Franjou, Vincent; Friedlander, Eric M.; Pirashvili, Teimuraz; Schwartz, Lionel Rational representations, the Steenrod algebra and functor homology, Panoramas et Synthèses [Panoramas and Syntheses], 16, Société Mathématique de France, Paris, 2003, pp. xxii+132 | MR | Zbl

[11] Franjou, Vincent; Friedlander, Eric M.; Scorichenko, Alexander; Suslin, Andrei General linear and functor cohomology over finite fields, Ann. of Math. (2), Volume 150 (1999) no. 2, pp. 663-728 | DOI | MR | Zbl

[12] Friedlander, Eric M.; Suslin, Andrei Cohomology of finite group schemes over a field, Invent. Math., Volume 127 (1997) no. 2, pp. 209-270 | DOI | MR | Zbl

[13] Krause, Henning Koszul, Ringel and Serre duality for strict polynomial functors, Compos. Math., Volume 149 (2013) no. 6, pp. 996-1018 | DOI | MR | Zbl

[14] Loday, Jean-Louis; Vallette, Bruno Algebraic operads, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 346, Springer, Heidelberg, 2012, pp. xxiv+634 | MR | Zbl

[15] Mac Lane, Saunders Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995, pp. x+422 (Reprint of the 1975 edition) | MR | Zbl

[16] Serre, Jean-Pierre Cohomologie modulo 2 des complexes d’Eilenberg-MacLane, Comment. Math. Helv., Volume 27 (1953), pp. 198-232 | DOI | MR | Zbl

[17] Suslin, Andrei; Friedlander, Eric M.; Bendel, Christopher P. Infinitesimal 1-parameter subgroups and cohomology, J. Amer. Math. Soc., Volume 10 (1997) no. 3, pp. 693-728 | DOI | MR | Zbl

[18] Touzé, Antoine Cohomology of classical algebraic groups from the functorial viewpoint, Adv. Math., Volume 225 (2010) no. 1, pp. 33-68 | DOI | MR | Zbl

[19] Touzé, Antoine Troesch complexes and extensions of strict polynomial functors, Ann. Sci. Éc. Norm. Supér. (4), Volume 45 (2012) no. 1, pp. 53-99 | Numdam | MR | Zbl

[20] Weibel, Charles A. An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, Cambridge, 1994, pp. xiv+450 | MR | Zbl

Cited by Sources: