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BAR COMPLEXES AND EXTENSIONS OF CLASSICAL
EXPONENTIAL FUNCTORS

by Antoine TOUZÉ (*)

Abstract. — We compute Ext-groups between classical exponential functors
(i.e. symmetric, exterior or divided powers) and their Frobenius twists. Our method
relies on bar constructions, and bridges these Ext-groups with the homology of
Eilenberg-Mac Lane spaces.

This article completes earlier results of the author, and provides an alternative
approach to classical Ext-computations in the category of strict polynomial func-
tors over fields. We also obtain significant Ext-computations for strict polynomial
functors over the integers.
Résumé. — Nous calculons les groupes d’Ext entre foncteurs exponentiels clas-

siques (i.e. puissances symétriques, extérieures ou divisées), et leur précomposition
par le foncteur de torsion de Frobenius. Notre méthode repose sur les constructions
bar, et relie ces calculs d’Ext avec l’homologie des espaces d’Eilenberg et Mac Lane.

Cet article complète des résultats précédents de l’auteur, et fournit une approche
alternative aux calculs d’Ext classiques dans la catégorie des foncteurs strictement
polynomiaux sur un corps. Nous obtenons aussi des calculs d’Ext notables pour les
foncteurs strictement polynomiaux sur les entiers.

1. Introduction

1.1. Given a commutative ring k, we denote by Pk the category of strict
polynomial functors introduced by Friedlander and Suslin in [12]. These
strict polynomial functors are functors F : Vk → k-Mod from the category
Vk of finitely generated projective k-modules to the category of k-modules,
equipped with an additional scheme-theoretic structure. The computation
of Ext groups in Pk has applications to the cohomology of algebraic groups
and the Steenrod algebra, see [10].

Keywords: Strict polynomial functors, extensions, bar complexes, Eilenberg-Mac Lane
spaces, Frobenius twist.
Math. classification: 18G15, 57T30, 20G10.
(*) The author was partially supported by the ANR HGRT (Projet BLAN08-2 338236).
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The symmetric powers Sd : V 7→ Sd(V ), the exterior powers Λd : V 7→
Λd(V ) or the divided powers Γd : V 7→ Γd(V ) = (V ⊗d)Sd yield funda-
mental examples of strict polynomial functors. We refer to them as the
“classical exponential functors”. Indeed they are the most common graded
functors X∗ satisfying an exponential formula, i.e. a graded isomorphism
(see section 5 for more on exponential functors):

X∗(V ⊕W ) ' X∗(V )⊗X∗(W ).

If k is a field of positive characteristic p, we denote by I(r) the r-th Frobe-
nius twist functor, for r ∈ N , and by F (r) the precomposition of a strict
polynomial functor F by the r-th Frobenius twist functor (with the con-
vention that I(0) is the identity functor, hence F (0) = F ). Frobenius twists
are additive functors, so the twisted variant X∗ (r) of a classical exponential
functor X∗ is also an exponential functor.
The classical exponential functors, and their twisted variants over a

field k of positive characteristic, are among the most elementary exam-
ples of strict polynomial functors. However, the computation of extension
groups in Pk between these functors is a challenging problem, and the main
topic of this article.
Let us first consider the untwisted case, over an arbitrary commutative

ring k. We order the classical exponential functors as follows: Γ∗ < Λ∗ < S∗.
If X∗ and Y ∗ are classical exponential functors with X∗ 6 Y ∗ then it is
well-known(1) that ExtiPk

(X∗, Y ∗) is zero if i > 0. The degree zero part is
an elementary computation, so the only nontrivial computations to achieve
are those of

(i) Ext∗Pk
(S∗,Λ∗),

(ii) Ext∗Pk
(Λ∗,Γ∗),

(iii) Ext∗Pk
(S∗,Γ∗).

Moreover, the first two extensions (i) and (ii) are isomorphic by a duality
argument. So we only consider the extension groups (i) and (iii). Akin
studied [1] the extension groups (i). He actually performed computations
in the equivalent category of modules over the Schur algebra. His results
give a formula for the dimension of these Ext-groups when k is a field
of positive characteristic, as well as the computation of ExtiPk

(Sd,Λd) for
i = 1 and d − 1 when k is the ring of integers. The method of Akin uses

(1)This follows from the projectivity of divided powers, and the injectivity of symmetric
powers, except for the case of the extensions Exti

Pk
(Λ∗, Λ∗). In the latter case, there are

many proofs of this vanishing, and we will provide one in remark 7.6.
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BAR COMPLEXES AND EXTENSIONS 2565

the classical resolution of exterior powers by symmetric powers, given by
the bar construction of the symmetric algebra.
Over a field k of positive characteristic p, we also consider the exten-

sions between the classical exponential functors precomposed by Frobenius
twists. Precomposition by Frobenius twists actually creates a lot of exten-
sions, and the extension groups

Ext∗Pk
(X∗ (r), Y ∗ (r))

are non-trivial, even when the classical exponential functor X∗ is smaller
than Y ∗ (for the order defined before). The Ext-groups with X∗ 6 Y ∗ were
computed in [11]. In this article, the authors prove that these extension
groups are equipped with a convolution product, as well as a coproduct
of the same type and they compute these extension groups as trigraded
bialgebras. Their method is different from the method of Akin, namely it
relies on the analysis of some hypercohomology spectral sequences associ-
ated to Koszul and De Rham complexes. The remaining extension groups,
i.e. those with X∗ > Y ∗, were computed in [5] with the same techniques,
together with a Koszul duality phenomenon. However, [5, Thm 3.2], a key
result in [5], is false in characteristic 2 (as explained in remark 4.7).

1.2. The main goal of this article is to provide new methods to compute
the extension groups in Pk between classical exponential functors, and also
between their twisted variants. Our methods differ from the methods used
in [11, 5]. They rather take the same starting point as in Akin’s compu-
tations [1], namely (iterated) bar complexes of the symmetric algebra. We
obtain the following results.
(1) Over a field k, our approach provides new independent computations

of all the Ext-groups computed in [11, 5]. The statements of our
results are given in section 15.1. We carefully compare our results
with the results given in [11, 5] in section 15.3. In particular our
computations agree with all the computations of [11].

(2) Our methods also allow the computation of Ext-groups between clas-
sical exponential functors over the ring k = Z. In particular, we
obtain in theorem 11.8 an explicit simple formula describing the
abelian groups ExtiPZ

(Sd,Λd), for all i, thus extending the results
of [1]. Other (more complicated) descriptions are obtained in theo-
rems 11.20 and 11.21.

To obtain our computations of extension groups in Pk between (un-
twisted) classical exponential functors, we interpret them as the singular

TOME 64 (2014), FASCICULE 6



2566 Antoine TOUZÉ

homology with k coefficients of some Eilenberg-Mac Lane spaces. The ho-
mology of these spaces was computed by Serre with F2 coefficients [16], and
by Cartan in general [4]. Then we elaborate on Cartan’s results to obtain
our Ext-computations. As an intermediate result, we obtain the following
computation, of independent and general interest.

(3) We compute in theorem 10.14 the homology of iterated bar con-
structions of the divided power algebra Γ∗(V ), over any field k.
(See corollary 8.3 for the relation to Cartan’s computations and re-
mark 10.9 for an explanation why Cartan’s computations only give
the result over prime fields).

Apart from the results listed above, we feel that many technical results
proved in the course of the article might be useful tools for further Ext-
computations. For example, the key proposition 7.2 has a wider range of
application than classical exponential functors.

1.3. We now briefly sketch the structure of our proof.

1.3.1. Structures on extension groups. Let X∗ and Y ∗ be classical expo-
nential functors (or their Frobenius twisted variant if k is a field of positive
characteristic). Before undertaking computations, we review in part I of the
paper various structures which equip the extension groups Ext∗Pk

(X∗, Y ∗),
and determine which ones it is important to compute.

Functoriality. Parameterized extensions were introduced (for different
reasons) in [5] and [19], and they are a key tool for our computations. If V ∈
Vk, we let X∗V be the functor U 7→ X∗(Homk(V,U)). The parameterized
extensions E(X,Y ) are the (tri)graded strict polynomial functor defined by
(the parameter is the variable “V ”)

E(X,Y )(V ) =
⊕

i,d,e>0
Ei(Xd, Y e) =

⊕
i,d,e>0

ExtiPk
(Xd V , Y e).

We denote by H(X,Y ) the “Hom-part”, i.e. the summand with i = 0, of
E(X,Y ). We will study the functors E(X,Y ) rather than the mere extension
groups Ext∗Pk

(X∗, Y ∗) because functoriality reveals useful hidden structure
(cf. the gradings and the coproducts below), and parameterized extension
groups are not much more difficult to compute.

Gradings. The trigrading of E(X,Y ) is artificial because the second and
the third partial degrees are linearly dependent. For example, E∗(Sd,Λe)

ANNALES DE L’INSTITUT FOURIER



BAR COMPLEXES AND EXTENSIONS 2567

is zero if d 6= e, so we actually have to compute the bigraded extensions

E(S,Λ) =
⊕
i,d>0

Ei(Sd,Λd).

Moreover, since we study parameterized extension groups, even the bi-
grading is artificial. Indeed, the second grading (i.e. the exponent “d”) is
encoded by the functoriality(2) . Thus we only have to determine E(X,Y )
as a strict polynomial functor, with a single Ext-grading.

Products. The parameterized extension groups E(X,Y ) are equipped
with a convolution product defined in [11]. We say for short a “Pk-graded
algebra” for a graded strict polynomial functor endowed with an algebra
structure. We will actually compute the Pk-graded algebra E(X,Y ).

Coproducts. When the ground ring k is a field, E(X,Y ) is also equipped
with a coproduct defined in [11]. The coproducts are computed in [11, 5].
However, we prove in section 5 that these parameterized extensions actually
satisfy an exponential formula:

E(X,Y )(V ⊕W ) ' E(X,Y )(V )⊗ E(X,Y )(W ).

The coproduct is determined by the exponential formula, and the expo-
nential formula is in turn determined by the product on E(X,Y ). Thus, if
we compute the Pk-graded algebra E(X,Y ), we can easily deduce the co-
product from the product (see remark 5.9). That’s why we limit ourselves
to computing E(X,Y ) as Pk-graded algebras in this article.

1.3.2. Extensions between classical exponential functors. As in the case of
extension groups without parameters, the only non-trivial computations to
achieve are the computations of E(S,Λ) ' E(Λ,Γ) and E(S,Γ).

In part II of the paper, show that these extension groups can be computed
(up to regrading) as the homology of the bar construction, resp. twice
iterated bar construction, of the divided power algebra.

To prove this, we start in the same way as [1], that is, we consider
the resolutions of exterior and divided powers yield by iterated bar con-
structions of the symmetric algebra. Thus our extension groups may be
computed (up to regrading) as the homology of the differential graded Pk-
algebras H(S,BS) and H(S,B2

S). The regrading involves sign issues which
are taken care of by the “regrading functors” described in section 6. Then

(2)We call “weight” the grading implicitly encoded by the functoriality. See section 3
and definition 4.8.

TOME 64 (2014), FASCICULE 6
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the key result is proposition 7.2, which says that in our situation (and many
others), the symbols “H” and “B” can be interchanged. For example

H(S,BS) ' B(H(S, S)) ' BΓ.

1.3.3. The homology of Eilenberg-Mac Lane spaces. So we are left with the
problem of computing the Pk-graded algebra H(BnΓ). Let Γ(kn[2]) be the
free divided power algebra over k, generated by the k-module kn placed in
degree 2. We prove in corollary 8.3 an isomorphism of graded k-algebras,
natural with respect to Zm:

H∗(B
n(Γ(Zm ⊗Z k[2]))) ' Hsing

∗ (K(Zm, n+ 2),k)

between the homology of iterated bar constructions of divided powers, and
the singular homology of Eilenberg-Mac Lane spaces. The later was com-
puted by Cartan [4]. However, Cartan’s result is not enough for our pur-
poses: we really need the left hand side as a Pk-graded algebra (see more
details on Pk-graded algebras in section 3). So we have to elaborate on
Cartan’s computations to get our results.

1.3.4. Frobenius twists. In part IV of the paper, we explain how to retrieve
the Pk-graded algebras E(X(r), Y (s)) from Pk-graded algebra E(X,Y ) in a
simple way (k is now a field of positive characteristic p). This part is a sequel
to [19] and some theorems of [19] are actually used in section 13, while the
other sections of part IV are dedicated to complementary techniques.

1.4. Some conventions used in the article. In the article, we work over
a commutative base ring k, we denote by k−mod the category of k-modules
and by Vk the full subcategory of finitely generated projective k-modules.
The k-linear dual of a k-module V is V ∨ = Homk(V,k). Otherwise explicitly
stated, tensor products are taken over k. In particular, if V is a graded k-
module, the symbols S(V ), Λ(V ) and Γ(V ) refer to the symmetric, the
exterior and the divided power algebras over k (i.e. S(V ) = Sk(V )).
Otherwise explicitly stated, the word “degree” means “homological de-

gree”. Homological degrees are denoted by indices, i.e. if M is a complex,
Mi denotes the direct summand of degree i, and differentials lower the de-
gree by one. Sometimes, cohomological degrees appear: they are denoted
by exponents as in ExtiPk

(F,G). Such cohomological degrees can be con-
verted into homological degrees by the usual formula: M i = M−i. If M is
an ungraded object, we denote by M [i] the graded object with M [i]j = M

if i = j and zero if i 6= j. When cohomological degrees naturally appear
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in a formula, we use the notation M〈i〉 to denote a copy of M placed in
cohomological degree i (thus M〈i〉 = M [−i]).

It is well known that the abelian category Pk of strict polynomial functors
decomposes as a direct sum Pk =

⊕
d>0 Pd,k. Elements of Pd,k are called

homogeneous functors, and if F ∈ Pd,k, the integer d is often called the
“degree” of the functor [12]. To avoid confusion with homological degrees,
we do not use this terminology, we rather call d the weight of the functor
(cf. section 2 below).

Part I. General structure results

In this part, we describe the framework and the notations for our com-
putations.

2. Recollections of strict polynomial functors

In this section, we briefly review basic facts of the theory of strict polyno-
mial functors needed in the article. We refer the reader to [12, 17, 10, 18, 13]
for more details.

2.1. Strict polynomial functors

For d>0, let ΓdVk be the category with the same objects as Vk (i.e. finitely
generated projective k-modules) but whose morphisms are Sd-equivariant
maps:

HomΓdVk(V,W ) = HomSd(V ⊗d,W⊗d),
where Sd acts on V ⊗d by permuting the factors of the tensor product, and
composition in ΓdVk is composition of Sd-equivariant maps (by convention,
V ⊗0 = k, and S0 = {1}). The notation “ΓdVk” is justified by the isomor-
phism Γd(Homk(V,W )) ' HomΓdVk(V,W ), induced by the isomorphism

HomSd(V ⊗d,W⊗d) = Homk(V ⊗d,W⊗d)Sd ' (Homk(V,W )⊗d)Sd .

The category Pd,k of homogeneous strict polynomial functors of weight
d is the abelian category of k-linear functors from ΓdVk to k-mod.
The abelian category Pk of strict polynomial functors is the direct sum:

Pk =
⊕
d>0
Pd,k.

TOME 64 (2014), FASCICULE 6



2570 Antoine TOUZÉ

So the weight is an implicit grading on strict polynomial functors. Each
strict polynomial functor F splits as a direct sum F = ⊕Fd of homoge-
neous strict polynomial functors Fd of weight d, and HomPk(Fd, Ge) equals
HomPd,k(Fd, Ge) if e = d and zero otherwise.

2.2. Strict polynomial vs ordinary functors

Let Fk denote the category of “ordinary functors”, i.e. functors from Vk
to k-mod. There is an exact and faithful forgetful functor

U : Pk → Fk.

(The restriction U : Pd,k → Fk is defined as the precomposition by the
functor γd : Vk → ΓdVk, where γd is the identity on objects and γd(f) :=
f⊗d.) Thus, we can think of strict polynomial functors as ordinary functors,
equipped with a “strict polynomial structure”. For example, the following
functors

(i) the d-th tensor product ⊗d : V 7→ V ⊗d,
(ii) the d-th exterior power Λd : V 7→ V ⊗d,
(iii) the d-th symmetric power Sd : V 7→ Sd(V ) = (V ⊗d)Sd (coinvari-

ants under the action of Sd),
(iv) the d-th divided power Γd : V 7→ Γd(V ) = (V ⊗d)Sd (invariants

under the action of Sd, the reason for the name “divided power” is
given in section 9).

have a canonical structure of homogeneous strict polynomial functors of
weight d.

Remark 2.1. — If k is an infinite field, the forgetful functor U : Pk → Fk
is full and faithful, so Pk can be thought of as a full subcategory of Fk. In
general, the behavior of the forgetful functor is more subtle. For example,
if k = Fp, the r-th Frobenius twist functor I(r) [12, (v) p.224] and the
identity functor I are nonisomorphic strict polynomial functors (they are
homogeneous of different weights), but UI(r) = UI. Even if we only consider
homogeneous strict polynomial functors of a given weight, the restriction
U : Pd,k → Fk behaves badly. For example if k = F2, one can show that
F = S2(1)⊗ I(1) and G = S2⊗ I(2) are nonisomorphic objects of P6,F2 , but
U(F ) ' U(G).

2.3. Operations on strict polynomial functors

Usual operations on ordinary functors (composition, tensor products and
duality) lift at the level of strict polynomial functors. If F and G are strict

ANNALES DE L’INSTITUT FOURIER
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polynomial functors, their tensor product (F ⊗ G)(V ) = F (V ) ⊗ G(V )
is canonically equipped with the structure of a strict polynomial functor.
If we restrict our attention to homogeneous functors, the tensor product
induces a functor:

⊗ : Pd,k × Pe,k → Pd+e,k.

Given a strict polynomial functor F , the dual functor F ] : V 7→ F (V ∨)∨
(where ∨ refers to the k-linear dual) is canonically a strict polynomial
functor. For example Sd ] ' Γd, Λd ] ' Λd and Γd ] ' Sd. The functor

] : Pop
d,k → Pd,k

is called “Kuhn duality” in [12]. If P ′d,k denotes the full subcategory of Pd,k
of functors with values in Vk, duality induces an equivalence of categories
P ′d,k

op ' P ′d,k.
Finally, the composition G◦F of a strict polynomial functor G by a strict

polynomial functor F makes sense, provided F takes finitely generated
projective values. So composition yields a functor:

◦ : Pd,k × P ′e,k → Pde,k.

In particular, we can consider the precomposition by the following homo-
geneous functors. The functors V⊗ : W 7→ V ⊗W , and Homk(V,−) : W 7→
Homk(V,W ) (these functors have weight 1), and if k is a field of charac-
teristic p > 0, the r-th Frobenius twist I(r) (of weight pr) [12, (v) p.224].
Such compositions will occur frequently in the article.

Notation 2.2. — For all F ∈ Pk, we use the following notations:

F (r) = F ◦ I(r), FV := F ◦ (V⊗), FV := F ◦Homk(V,−).

The functors FV and FV are called “parameterized functors” (the param-
eter is the finitely generated projective k-module V ).

2.4. Homological algebra in Pk

The abelian categories Pd,k, have enough projectives. To be more specific,
a projective generator is given by the parameterized divided power

Γd,V := HomΓdVk(V,−) ' (Γd)V ,

for V a free k-module with rank greater or equal to d. The projectivity of
Γd,V (for all V ∈ Vk) is a consequence of the Yoneda isomorphism (fre-
quently used in the sequel of the article):

HomPd,k(Γd,V , F ) ' F (V ).

TOME 64 (2014), FASCICULE 6
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Since Pk =
⊕

d>0 Pd,k the category Pk also has enough projectives. If Fd
and Ge are homogeneous strict polynomial functors of weight d, resp. e,
then Ext∗Pk

(Fd, Ge) is equal to Ext∗Pd,k(Fd, Ge) if d = e, and zero otherwise.
The following lemma explains that the parameterized symmetric powers

SdV play the role of injective functors, provided we restrict to functors with
values in Vk (which is the case for all the Ext-computations of the paper).

Lemma 2.3. — Let F,G ∈ Pd,k. Assume that F and G take finitely
generated projective values. Duality induces an isomorphism (natural in
F ,G)

Ext∗Pk
(F,G) ' Ext∗Pk

(G], F ]).

Moreover G admits a coresolution by finite direct sums of copies of functors
of the form SdV , and if JG is such a resolution, Ext∗Pk

(F,G) equals the
homology of the complex HomPk(F, JG).

Proof. — Let us denote by P ′k the full subcategory of Pk whose objects
are the strict polynomial functors with values in Vk. This is an exact sub-
category of Pk, with projective objects Γd,V , cf. [17, Section 2]. A projective
resolution in P ′k remains a projective resolution if we view it in Pk, so in-
clusion P ′k ↪→ Pk induces an isomorphism at the level of Exts.
The duality functor is an equivalence of categories when restricted to P ′k.

So the first assertion of lemma 2.3 follows from the commutative diagram:

Ext∗Pk
(F,G)

]

// Ext∗Pk
(G], F ])

Ext∗P′k(F,G)
]

'
//

'

OO

Ext∗P′k(G
], F ])

'

OO
.

The second assertion of lemma 2.3 follows from the fact that category
P ′k has enough injectives, and an injective cogenerator is provided by the
functors SdV , cf. [17, Section 2]. �

3. A hierarchy of algebras

In this article, the algebras considered are often endowed with an addi-
tional structure such as functoriality or an extra grading (called “weight”).
The categories of k-algebras we will use are organized according to the

ANNALES DE L’INSTITUT FOURIER
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following diagram.

{Pk-dg-alg}
evV //

U
��

{k-wdg-alg}

��
(H)

{Fk-dg-alg}
evV // {k-dg-alg}

In this diagram, the arrows are functors induced by forgetting part of the
structure. Thus, the category {k-dg-alg} on the bottom right corner of the
diagram is the one having the less structured objects. In this section, we
review the definitions of the various categories appearing in the hierarchy
diagram (H).

3.1. Differential graded algebras

By {k-dg-alg}, we denote the usual category of differential graded alge-
bras over the commutative base ring k.
If A is a differential graded algebra, the degree of a homogeneous element

x ∈ A is denoted by |x|. Recall that the tensor product A ⊗ B of two dg-
algebras has product (a⊗ b) · (a′ ⊗ b′) = (−1)|a′||b|aa′ ⊗ bb′ and differential
∂(a⊗ b) = (∂a)⊗ b+ (−1)|a|a⊗ (∂b).
Graded k-algebras are viewed as dg-algebras with trivial differential, and

ungraded k-algebras are viewed as dg-algebras concentrated in degree zero.

3.2. Weighted differential graded algebras

By {k-wdg-alg}, we denote the category of weighted differential graded
algebras over k. The objects of this category are the weighted graded dif-
ferential algebras over k, that is, the dg-algebras A equipped with an extra
nonnegative grading, called “weight”. The weight of a homogeneous element
x ∈ A is denoted by w(x) and the weights are required to satisfy:

w(xy) = w(x) + w(y), w(∂x) = w(x).

Morphisms of wdg-algebras are k-linear maps which preserve the gradings
and the weights, which are multiplicative and which commute with the
differentials.
The tensor product A ⊗ B of two wdg-algebras is defined by letting for

all homogeneous elements a, b :
(i) |a⊗ b| = |a|+ |b|, and w(a⊗ b) = w(a) + w(b),
(ii) (a⊗ b) · (a′ ⊗ b′) = (−1)|a′||b|aa′ ⊗ bb′,

TOME 64 (2014), FASCICULE 6
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(iii) ∂(a⊗ b) = (∂a)⊗ b+ (−1)|a|a⊗ (∂b).
Observe that the weights do not contribute to the signs in the definition
of tensor products. Thus, forgetting the weights yields a functor, which
preserves the tensor products:

{k-wdg-alg} → {k-dg-alg}.

3.3. Functorial differential graded algebras

We denote by {Fk-dg-alg} the category of functorial differential graded
algebras. The objects of this category are the functors A : Vk → {k-dg-alg},
and the morphisms are the natural transformations between such functors.
Let V ∈ Vk be a finitely generated projective k-module. Evaluation on

V yields a forgetful functor (we forget the naturality with respect to V ):

{Fk-dg-alg}
evV−−→ {k-dg-alg}.

The tensor product of two Fk-dg-algebras is defined in the target category,
so that the forgetful functor commutes with tensor products.

3.4. Strict polynomial differential graded algebras

We denote by {Pk-dg-alg} the category of strict polynomial differential
graded algebras. This is a category of highly structured algebras. To be
more specific, we make the following definitions.

Definition 3.1. — Let k be a commutative ring. A strict polynomial
differential graded algebra (Pk-dg-algebra) A is a collection of strict poly-
nomial functors {Ai,d} for i ∈ Z and d > 0, equipped with morphisms of
strict polynomial functors η : k → A0,0, m : Ai,d ⊗ Aj,e → Ai+j,d+e, and
∂ : Ai,d → Ai−1,d satisfying the following properties.

(i) For all d > 0, the strict polynomial functor Ai,d is homogeneous of
weight d.

(ii) For all V ∈ Vk, the unit η, the multiplication m and the differ-
ential ∂ make the k-module A(V ) =

⊕
i,dAi,d(V ) into a weighted

differential graded algebra.
The functor Ai,d will be referred to as the homogeneous part of degree i
and weight d of A.

The Pk-graded algebras are the Pk-dg-algebras with trivial differential,
and the Pk-algebras are the Pk-dg-algebras concentrated in degree zero.
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Symmetric, exterior and divided powers yield fundamental examples
of Pk-graded algebras. To be more specific, let X = S,Λ or Γ. Then
HomPk(Xd ⊗ Xe, Xd+e) is a rank one free k-module. If X = S or Λ, it
is generated by the unique morphism fitting into diagram (D1) below. For
X = Γ, it is generated by the unique morphism fitting in diagram (D2),
where S(d, e) ⊂ Sd+e is the set of all (d, e)-shuffles. We call this generator
the canonical map between Xd ⊗Xe and Xd+e.

(⊗d)⊗ (⊗e)

����

= // ⊗d+e

����
(D1)

Xd ⊗Xe
∃!

//____ Xd+e

, (⊗d)⊗ (⊗e)

∑
σ∈S(d,e)

σ
// ⊗d+e

(D2)

Γd ⊗ Γe
?�

OO

∃!
//_______ Γd+e

?�

OO .

In the remainder of the article, we will mostly use the Pk-graded algebras
of the following type.

• We denote by S[i] the symmetric algebra over generators of homo-
logical degree i. That is, S[i] is the strict polynomial graded algebra
whose homogeneous part of degree di and weight d equals Sd, with
multiplication defined by the canonical maps Sd⊗Se → Sd+e. The
algebra S[0] will simply be denoted by S. We define Λ[i] and Γ[i]
(and Λ, Γ) similarly.

• More generally, if F is a graded strict polynomial functor with val-
ues in Vk, we denote by S(F ) the symmetric algebra on F . It is
formed by the graded strict polynomial functors Sd ◦ F (with de-
grees defined as usual), and the multiplication is given by evaluating
the canonical map Sd ⊗ Se → Sd+e on F . We define the exterior
algebra Λ(F ) over F , and the divided power algebra Γ(F ) over F
similarly.

Definition 3.2. — A morphism of Pk-dg-algebras f : A → B is a col-
lection of morphisms of strict polynomial functors fi,d : Ai,d → Bi,d which
commute with the multiplications and the differentials of A and B.

We define the tensor product A ⊗ B of two Pk-dg-algebras by formulas
similar to the ones for the wdg-algebras (i.e. the degrees introduce Koszul
signs in the definition of the product and the differentials, but the weights
do not introduce such Koszul signs). The forgetful functor U : Pk → Fk
induces a functor:

{Pk-dg-alg}
U−→ {Fk-dg-alg}
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which commutes with tensor products. If V ∈ Vk is a finitely generated
projective k-module, evaluation on V induces a forgetful functor:

{Pk-dg-alg}
evV−−→ {k-wdg-alg},

which also commutes with tensor products.

Remark 3.3. — Let A be a Pk-dg-algebra. Then knowing the collection
of wdg-algebras A(V ), V ∈ Vk, and the Fk-dg-algebra UA is usually not
sufficient to determine A as a Pk-dg-algebra. Indeed, one can find (see
remark 2.1) nonisomorphic functors F,G ∈ Pd,k, such that U(F ) ' U(G).
Then the symmetric algebras A = S(F ) and B = S(G) are not isomorphic
as Pk-algebras, although we have isomorphisms of Fk-algebras UA = UB,
and isomorphisms of wg-algebras A(V ) ' B(V ) for all V .

3.5. More strict polynomial objects

In the article, we also need other strict polynomial objects. For instance,
the strict polynomial commutative differential graded algebras (Pk-cdg-
algebras) are the cdg-algebras which are commutative as differential graded
algebras, i.e. xy = (−1)|x||y|yx for all homogeneous elements x, y ∈ A(V ),
for all V ∈ Vk. The algebras can also be augmented (Pk-dga-algebras), or
commutative and augmented (Pk-cdga-algebras). We also use strict poly-
nomial differential graded coalgebras (Pk-dg-coalgebras), etc. It is quite
obvious how to adapt definition 3.1 to these cases, and we leave this to the
reader.

4. Structure of extension groups

4.1. Parameterized extension groups

In this section we introduce the parameterized extension groups E(F,G)
alluded to in the introduction of the paper. We begin by parameterized
Hom-groups H(F,G) = E0(F,G). Let F ∈ Pd,k, and recall from nota-
tion 2.2 the parameterized functors:

FV : W 7→ F (V ⊗W ) and FV : W 7→ F (Homk(V,W )).

Morphisms f ∈ HomΓdVk(V, V ′) induce morphisms of strict polynomial
functors FV → FV ′ and FV

′ → FV . Hence, for all F,G ∈ Pd,k we have
functors:

ΓdVk → k−mod
V 7→ HomPd,k(FV , G) ,

ΓdVk → k−mod
V 7→ HomPd,k(F,GV ) .
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Lemma 4.1. — The two strict polynomial functors

V 7→ HomPd,k(FV , G) and V 7→ HomPd,k(F,GV )

are canonically isomorphic. We denote them by H(F,G).

Proof. — Let us first take F = Γd,U . Then (Γd,U )V = Γd,U⊗V and the
Yoneda lemma yields an isomorphism:

HomPd,k((Γd,U )V , G) ' G(U ⊗ V ) ' HomPd,k(Γd,U , GV ),

natural with respect to G, to f ∈ HomΓdVk(V, V ′) and g ∈ HomΓdVk(U,U ′)
(or equivalently to g ∈ HomPd,k(Γd,U

′
,Γd,U )). Since the Γd,U , U ∈ Vk, form

a projective generator of Pd,k, we can take presentations of F to extend
this isomorphism to all F ∈ Pd,k. �

Let us turn to the category Pk of strict polynomial functors. If F,G
are strict polynomial functors, they split as finite direct sums F =

⊕
Fd

and G =
⊕
Gd, where Fd and Gd are homogeneous of weight d, and by

lemma 4.1, the functors

V 7→ HomPk(FV , G) =
⊕

HomPd,k(FVd , Gd)
V 7→ HomPk(F,GV ) =

⊕
HomPd,k(Fd, (Gd)V )

are canonically isomorphic strict polynomial functors, which we still de-
note by H(F,G). The following lemma summarizes the main properties of
parameterized Hom groups.

Lemma 4.2. — Let k be a commutative ring. Parameterized Hom groups
yield a bifunctor:

Pop
k × Pk → Pk
(F,G) 7→ H(F,G) .

If F , G are homogeneous of weight d, then so is H(F,G). Moreover:
(1) If F,G take values in Vk, Kuhn duality yields an isomorphism of

strict polynomial functors H(F,G) ' H(G], F ]), natural in F,G.
(2) If G ∈ Pd,k, there is an isomorphism H(Γd, G) ' G, natural in G.
(3) Tensor products induce morphisms of strict polynomial functors:

H(F,G)⊗H(F ′, G′) ⊗−→ H(F ⊗ F ′, G⊗G′).

Proof. — The first part of lemma 4.2 follows from lemma 4.1. To prove
(1), we can assume that F,G are homogeneous of weight d. Since (FV )] =
(F ])V , there is an isomorphism natural in F,G and f ∈ HomΓdVk(V, V ′)

HomPd,k(FV , G) ' HomPd,k(G], (FV )]) = HomPd,k(G], (F ])V ).
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Whence the result. (2) is the Yoneda lemma. For (3), we can assume that
F,G (resp. F ′, G′) are homogeneous of degree d (resp. e). The map:

HomPd,k(FV , G)⊗HomPe,k((F ′)W , G′)
⊗−→ HomPd+e,k(FV ⊗ (F ′)W , G⊗G′)

is natural with respect to f ∈ HomΓdVk(V, V ′) and g ∈ HomΓeVk(W,W ′)
(i.e. it is a morphism of strict polynomial bifunctors). Hence it becomes a
morphism of strict polynomial functors if one takes V = W . �

To define parameterized extension groups, we fix for each F a projective
resolution PF in Pk. We let E(F,G) be the homology of the complex of strict
polynomial functors H(PF , G). The following proposition follows directly
from lemma 4.2.

Proposition 4.3. — Let k be a commutative ring and let F,G be strict
polynomial functors over k. For all i > 0, the functors

V 7→ ExtiPk
(FV , G) and V 7→ ExtiPk

(F,GV )

are isomorphic strict polynomial functors. We denote them by Ei(F,G).
This yields bifunctors:

Pop
k × Pk → Pk
(F,G) 7→ Ei(F,G) .

The homogeneous part of weight d of the strict polynomial functor Ei(F,G)
is Ei(Fd, Gd), where Fd and Gd denote the homogeneous parts of F and
G of weight d. Moreover, if F,G take values in Vk, Kuhn duality induces
an isomorphism Ei(F,G) ' Ei(G], F ]). Finally, tensor products induce
morphisms of strict polynomial functors

Ei(F,G)⊗ Ej(F ′, G′)→ Ei+j(F ⊗ F ′, G⊗G′).

4.2. Convolution products

We now introduce the convolution product “?” on the parameterized
Hom-groups between a Pk-coalgebra C and a Pk-dg-algebra A. This con-
volution product can be defined more generally when C is a differential
graded object, see e.g. [14, Chap. 2], but we shall only need the case when
C is concentrated in degree zero. So we only describe the latter case, where
the signs are slightly simpler.

Definition 4.4. — Let C be a Pk-coalgebra and let A be a Pk-dg-
algebra. We denote by H(C,A) the Pk-dg-algebra defined as follows.

(i) The homogeneous part of H(C,A) of degree i and weight d equals
H(C0,d, Ai,d).
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(ii) The differential ∂′ of H(C,A) is given by postcomposing by the
differential of A:

∂′ := H(C0,d, ∂) : H(C0,d, Ai,d)→ H(C0,d, Ai−1,d).

(iii) The convolution product ? is defined as the composite:

H(C0,d, Ai,d)⊗H(C0,e, Aj,e)
⊗−→ H(C0,d ⊗ C0,d, Ai,e ⊗Aj,e)

H(∆,m)−−−−−→ H(C0,d+e, Ai+j,d+e).

(iv) The unit η′ is induced by the unit of A and the counit of C:

η′ := H(ε, η) : k = H(k,k)→ H(C0,0, A0,0).

If C is coaugmented (with coaugmentation η : k → C) and A is aug-
mented (with augmentation ε : A → k), the convolution algebra H(C,A)
is augmented, with augmentation H(η, ε) : H(C,A) → H(k,k) = k. Thus,
convolution algebras yield a functor:

H(C,−) : {Pk-dga-alg} → {Pk-dga-alg}.

The following lemma is an easy check.

Lemma 4.5. — Assume that C is a commutative Pk-coalgebra, and that
A is a graded commutative Pk-dg-algebra. Then H(C,A) is graded com-
mutative.

We have the following elementary computations of convolution algebras.

Lemma 4.6. — Let k be a commutative ring. Let C be a Pk-coalgebra,
and let A be a Pk-algebras. The following isomorphisms of Pk-algebras
hold.

H(Γ, A) ' A, H(C, S) ' C], H(S,Γ) ' Γ.

Moreover, H(S,Λ) ' H(Λ,Γ) is isomorphic to Γ if 2 = 0 in k, and to Λ
otherwise.

Proof. — We shall only prove the case of H(Λ,Γ). First, we have:

H(Λd,⊗d)(V ) ' HomPk(Λd,⊗dV ) ' HomPk(Λd,⊗d)⊗ V ⊗d.

The k-module HomPk(Λd,⊗d) is free of rank one, with generator the an-
tisymmetrization map ∆d : Λd → ⊗d. So the isomorphism above can be
rewritten as an isomorphism of functors

(∗) H(Λd,⊗d) ' ⊗d.

For all σ ∈ Sd, we identify σ with the morphism ⊗d → ⊗d which permutes
the factors of the tensor product. Since σ ◦∆d = ε(σ)∆d, the Sd-module
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HomPk(Λd,⊗d), where σ acts as Hom(Λd, σ), is isomorphic to k with action
of Sd given by the signature. So the isomorphism (∗) is Sd-equivariant if
σ acts as H(Λd, σ) on the left hand side, and as ε(σ)σ on the right hand
side.
Now, Γd (resp. Λd if 2 6= 0 in k) is the intersection of the kernels of the

maps Id−σ : ⊗d → ⊗d (resp. Id−ε(σ)σ), for σ ∈ Sd. So by left exactness
of parameterized Homs we obtain that H(Λd,Γd) is isomorphic to Λd if
2 6= 0 in k and to Γd if 2 = 0 in k.

It remains to identify the products. Let ∆d,e : Λd+e → Λd ⊗ Λe denote
the comultiplication of Λ. Since (∆d ⊗∆e) ◦∆d,e = ∆d+e, the composite

H(Λd,⊗d)⊗H(Λe,⊗e) ⊗−→ H(Λd ⊗ Λe,⊗d+e)→ H(Λd+e,⊗d+e)

identifies with the identity map (⊗d) ⊗ (⊗e) → ⊗d+e. We identify the
product on H(Λd,Γd) by viewing it as a subalgebra of the signed shuffle
algebra, with ⊗d in weight d and with product

∑
s∈S(d,e) ε(σ)σ : (⊗d) ⊗

(⊗e)→ ⊗d+e, where S(d, e) is the set of (d, e)-shuffles. �

Remark 4.7. — In characteristic 2, [5, Thm 3.2] asserts that the Pk-
algebra H(Λ,Γ) is isomorphic to Λ⊗ Γ(1). The elementary computation of
lemma 4.6 shows that this is false. (The problem in the proof of [5, Thm
3.2] is that there is no reason why v 7→ α

(i)
s (v) and v 7→ β

(i)
s (v) should be

k-linear).

We also have a convolution product (still denoted by ?) on the parame-
terized extension groups E(C,A) between a Pk-coalgebra and a Pk-graded
algebra (compare [11, p. 675]).

Definition 4.8. — Let C be a Pk-coalgebra and let A be a Pk-algebra.
We denote by E(C,A) the Pk-graded algebra defined as follows.

(i) The homogeneous part of degree −i and weight d of E(C,A) is the
functor Ei(C0,d, A0,d).

(ii) The unit is the map E0(ε, η) = H(ε, η).
(iii) The convolution product ? is defined as the composite:

Ei(C0,d, A0,d)⊗ Ej(C0,e, A0,e)
⊗−→ Ei+j(C0,d ⊗ C0,e, A0,d ⊗A0,e)

E(∆,m)−−−−−→ Ei+j(C0,d+e, A0,d+e).

The Ext-algebras considered in [11] and in [5] correspond to our strict
polynomial graded algebras E(X(r), Y (s)), for pairs (X,Y ) of classical ex-
ponential functors.
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4.3. (1, ε)-commutativity

The algebras E(C,A) we are interested in are usually not graded com-
mutative. One easily checks the following lemma (cf. [11, Lemma 1.11]).

Lemma 4.9. — Let X,Y be a pair of classical exponential functors and
let r, s be nonnegative integers (take r = s = 0 if k is not a field of
positive characteristic). Let ε(S) = ε(Γ) = 0 and let ε(Λ) = 1. The following
diagram commutes up to a (−1)ij+ε(X)k`+ε(Y )mn sign.

Ei(Xk(r), Y m(s))⊗ Ej(X`(r), Y n(s))
?

++WWWWWWWWWWWWWWWWWWWW

x⊗y 7→y⊗x

��

Ei+j(X(k+`) (r), Y m+n(s))

Ei(X`(r), Y n(s))⊗ Ej(Xk(r), Y m(s))

?

33gggggggggggggggggggg

Proof. — The (−1)ij sign is just the usual homological sign which comes
from the commutativity of tensor products at the level of chain complexes
C⊗D ' D⊗C, see e.g. [20, proof of lemma 6.7.12]. The signs (−1)ε(X)k` and
(−1)ε(Y )mn are the signs needed to have the following diagrams commute.

X(k+`) (r) //

''OOOOOOOOOOO Xk(r) ⊗X`(r)

'
��

X`(r) ⊗Xk(r)

Y m(s) ⊗ Y n(s)

'
��

// Y m+n(s)

Y n(s) ⊗ Y m(s)

77ooooooooooo

�

In order to formalize the graded commutativity defect of the convolution
product ?, we make the following definition.

Definition 4.10. — Let A be a wdg-algebra, and let ε ∈ {0, 1}. We say
that A is (1, ε)-commutative if for all homogeneous elements x, y in A we
have:

x · y = (−1)|x||y|+εw(x)w(y)y · x.
We say that a Pk-dg-algebra is (1, ε)-commutative if for all V ∈ Vk, the
wdg-algebra A(V ) is (1, ε)-commutative.

Thus, the (1, 0)-commutative Pk-dg-algebras are precisely the Pk-cdg-
algebras. The Pk-graded algebras S[i] and Γ[i] are (1, 0)-commutative for i
even, and (1, 1)-commutative for i odd, whereas Λ[i] is (1, 1)-commutative
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for i even and (1, 0)-commutative for i odd. We reformulate lemma 4.9 in
terms of (1, ε)-commutativity.

Lemma 4.11. — Let X,Y be a pair of classical exponential functors and
let r, s be nonnegative integers (take r = s = 0 if k is not a field of positive
characteristic). Let ε(S) = ε(Γ) = 0 and let ε(Λ) = 1. Let ε ∈ {0, 1} such
that ε = ε(X) + ε(Y ) mod 2. Then E(X(r), Y (s)) is (1, ε)-commutative.

If A and B are wdg-algebras which are (1, 1)-commutative, their tensor
product A ⊗ B is not (1, 1)-commutative. For this reason, we introduce a
“signed tensor product” ⊗ε.

Definition 4.12. — Let ε ∈ {0, 1}. And let A and B be wdg-algebras.
We define the wdg-algebra A⊗ε B in the following way.

(i) If a ∈ A and b ∈ B are homogeneous elements, the degree of a⊗b is
defined by |a⊗b| = |a|+|b| and its weight by w(a⊗b) = w(a)+w(b).

(ii) The unit of A⊗ε B is the tensor product of the units of A and B.
(iii) For all homogeneous elements a ∈ A and b ∈ B, the differential of

A⊗ε B is given by d(a⊗ b) = da⊗ b+ (−1)|a|a⊗ db.
(iv) For all homogeneous elements a, a′ ∈ A and b, b′ ∈ B, the product

of A⊗ε B is given by

(a⊗ b) · (a′ ⊗ b′) = (−1)|a
′||b|+εw(a′)w(b)(aa′)⊗ (bb′).

When ε = 0, the tensor product ⊗ε is the usual tensor product of graded
algebras. When ε = 1, the definition differs from the usual tensor product
by the sign involved in the product. One defines a tensor product ⊗ε on
Pk-dg-algebras analogously.

Lemma 4.13. — Let A and B be wdg-algebras. Then A ⊗ε B is (1, ε)-
commutative if and only if A and B are (1, ε)-commutative.

Proof. — If A ⊗ε B is (1, ε)-commutative, then A (resp. B) identifies
with the subalgebra of the elements of the form a ⊗ 1 (resp. 1 ⊗ b), so it
is also (1, ε)-commutative. Conversely, let A and B be (1, ε)-commutative.
Let a, a′ ∈ A and b, b′ ∈ B be homogeneous elements. We denote f(x, y) =
|x||y|+ εw(x)w(y). We have

(a⊗ b) · (a′ ⊗ b′) = (−1)f(a′,b)(aa′)⊗ (bb′),

= (−1)f(a′,b)+f(a,a′)+f(b,b′)(a′a)⊗ (b′b),

= (−1)f(a′,b)+f(a,a′)+f(b,b′)+f(a,b′)(a′ ⊗ b′) · (a⊗ b).

The sign appearing on the last line equals f(a ⊗ b, a′ ⊗ b′), so A ⊗ε B is
(1, ε)-commutative. �
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5. The exponential property

In this section, we recall the basics of exponential functors. Archetypes
of exponential functors are symmetric, exterior and divided powers, this is
why we call them “classical exponential functors”. We prove that when
C and A are exponential functors, the parameterized extension groups
E(C,A) are exponential functors.

5.1. Exponential functors

Definition 5.1. — Let A be a Pk-graded algebra. Then A is called an
exponential functor if (i) A(0) = A0,0(0) = k and each summand Ai,d of
degree i and weight d takes values in Vk, and (ii) the following composite
is an isomorphism of graded k-modules (here ιV and ιW are the canonical
inclusions of V and W in V ⊕W , and m is the product in A).

A(V )⊗A(W ) A(ιV )⊗A(ιW )−−−−−−−−−→ A(V ⊕W )⊗2 m−→ A(V ⊕W )

Example 5.2. — If i is an integer, the Pk-graded algebras S[i], Λ[i]
and Γ[i] from section 3.4 are exponential functors. Also, if F is an additive
functor (e.g. one of the functors V⊗, Homk(V,−) or I(r) from notation 2.2),
and if A is an exponential functor, then the composite A(F ) = A ◦F is an
exponential functor.

We refer to the isomorphism A(V ⊕W ) ' A(V )⊗A(W ) as the exponen-
tial isomorphism. By definition, the multiplication of an exponential functor
determines the exponential isomorphism. Conversely, if A is an exponen-
tial functor, the multiplication of A can be recovered from the exponential
isomorphism, as the composite (where Σ is the map (x, y) 7→ x+ y):

A(V )⊗A(V ) '−→ A(V ⊕ V ) A(Σ)−−−→ A(V ).

Similarly, if A is an exponential functor, the exponential isomorphism can
also be used to define a comultiplication ∆ on A, as the composite (where
δ is the map x 7→ (x, x)):

A(V ) A(δ)−−−→ A(V ⊕ V ) '−→ A(V )⊗A(V ).

And the exponential isomorphism can be recovered from the comultiplica-
tion ∆ as the composite (where πV and πW denote the canonical projec-
tions)

A(V ⊕W ) ∆−→ A(V ⊕W )⊗2 A(πV )⊗A(πW )−−−−−−−−−−→ A(V )⊗A(W ).
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So, if A is an exponential functor, each one of the following data determines
the two other ones: the multiplication, the exponential isomorphism, the
comultiplication.

Example 5.3. — For the classical exponential functors X = S, Λ or Γ,
the coproduct determined by the usual multiplication (i.e. the one defined
by the canonical maps Xd ⊗ Xe → Xd+e indicated in section 3.4) is the
usual coproduct.

The following lemma is straightforward, we record it for further use.

Lemma 5.4. — Let A,B be exponential functors and let f : A→ B be
a morphism of graded functors. The following assertions are equivalent.

(i) f is a morphism of Pk-graded algebras,
(ii) f commutes with the exponential isomorphisms,
(iii) f is a morphism of Pk-graded coalgebras.

5.2. The exponential property for extension groups

We now show that (under mild hypotheses), the parameterized extension
groups E(C,A) between exponential functors are an exponential functor.
We begin with a statement on the Hom-level.

Lemma 5.5. — Let E be an exponential functor, and let F,G be strict
polynomial functors with values in Vk. Let us denote Ei by the summand of
E of degree i: Ei =

⊕
dEi,d. Assume that for all i, H(Ei, F ) and H(Ei, G)

take k-projective values. Then the composite is a graded isomorphism
(where the morphism on the right is induced by the comultiplication of
E, and the total degree is taken on the left hand side)⊕
i>0

H(Ei, F )⊗
⊕
j>0

H(Ej , G) ⊗−→
⊕
i,j>0

H(Ei⊗Ej , F⊗G)→
⊕
k>0

H(Ek, F⊗G).

Similarly, if the Hom-groups H(F,Ei) and H(G,Ei) are in Vk, the following
composite (where the morphism on the right is induced by the multipli-
cation of E, and the total degree is taken on the left hand side) is an
isomorphism:⊕
i>0

H(F,Ei)⊗
⊕
j>0

H(G,Ej)
⊗−→
⊕
i,j>0

H(F⊗G,Ei⊗Ej)→
⊕
k>0

H(F⊗G,Ek).

Proof. — The Kuhn dual of an exponential functor is an exponential
functor. So by lemma 4.2, the first isomorphism of lemma 5.5 is equivalent
to the second one via Kuhn duality. Thus we only prove the latter.
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Fix V ∈ Vk and denote by Ai,d the functor (Ei,d)V and by [F,Ai,d] the
k-module HomPk(F,Ai,d). We have to prove that the following composite,
called Φ in the sequel, is an isomorphism.⊕
i+j=k

[F,Ai,d]⊗ [G,Aj,e]
⊗−→

⊕
i+j=k

[F ⊗G,Ai,d ⊗Aj,e]→ [F ⊗G,Ak,d+e]

Case F = ΓdX , G = Γe Y . In this case, the source and the target of Φ
are bifunctors with variables X ∈ ΓdVk and Y ∈ ΓeVk, and Φ is a natural
transformation of bifunctors. But F⊗G identifies as the direct summand of
weight d with respect to X and weight e with respect to Y of the bifunctor
Γ`,X⊕Y . So Φ is the homogeneous part of weight d with respect to X and e
with respect to Y of the morphism (where the downwards map is induced
by the multiplication of A and by the diagonal Γ`X⊕Y → ΓdX ⊗ Γe Y ):⊕

i + j = k
d + e = `

[ΓdX, Ai,d]⊗ [Γe Y, Aj,e] ⊗ //

⊕
i + j = k
d + e = `

[ΓdX⊗ Γe Y, Ai,d ⊗Aj,e]

��
[Γ`X⊕Y , Ak,`]

The latter identifies through the Yoneda isomorphism with the composite⊕
i + j = k
d + e = `

Ai,d(X)⊗Aj,e(Y ) ⊗ //

⊕
i + j = k
d + e = `

Ai,d(X ⊕ Y )⊗Aj,e(X ⊕ Y )

��
Ak,`(X ⊕ Y ),

where the downwards map is induced by the multiplication of A(X ⊕ Y ).
But A = EV is an exponential functor, so the latter composite is an iso-
morphism. Whence the result for F = ΓdX , G = Γe Y .

General case. By additivity of (parameterized) Hom groups, we can
restrict to the case of homogeneous functors F ∈ Pd,k and G ∈ Pe,k. Now
[F,Ai,d] and [G,Aj,e] are projective k-modules, and so are [Γd,X , Ai,d] and
[Γe,Y , Aj,e] (by the Yoneda lemma, since the homogeneous summands of
A have values in Vk). Hence the result for arbitrary F,G follows from the
result for F = Γd,X and G = Γe,Y by left exactness of Homs, when taking
projective presentations of F and G. �
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Remark 5.6. — Alternatively, one can prove lemma 5.5 by using first
the sum-diagonal adjunction as in the proof of [11, Thm 1.7], and then
identifying the isomorphism obtained, as in [18, Lemma 5.13].

If k is a field, then the hypothesis that the Hom-groups H(Ei, F ) and
H(Ei, G) are finitely generated and projective over k is automatically satis-
fied. The next result follows from lemma 5.5 by taking projective resolutions
and using the Künneth formula.

Lemma 5.7 (Compare [11, Thm 1.7]). — Let k be a field, let E be an
exponential functor, and let F,G be strict polynomial functors with values
in Vk. The following composite is an isomorphism.⊕
i+j=k

E(F,Ei)⊗ E(F,Ej)
⊗−→

⊕
i+j=k

E(F ⊗G,Ei ⊗ Ej)→ E(F ⊗G,Ek)

Proposition 5.8. — Let k be a field, let X,Y be exponential functors
concentrated in degree 0 (i.e. Xi,d = Yi,d = 0 for i > 0). The Pk-graded
algebra E(X,Y ) is a an exponential functor.

Proof. — First, since k is a field and the functors X0,d and Y0,d take
finite dimensional values, the functors Ei(X0,d, Y0,d) take finite dimensional
values. So it remains to check the exponential isomorphism. The following
composite (where the morphism on the left hand side is induced by the
canonical inclusions of V , W in V ⊕W , and the morphism on the right
hand side is given by the convolution product of E(X,Y )) :

E(X,Y )(V )⊗ E(X,Y )(W )→ E(X,Y )(V ⊕W )⊗2 → E(X,Y )(V ⊕W )

is an isomorphism. Indeed, it equals the composite

E(X,YV )(k)⊗ E(X,YW )(k)→ E(X,YV ⊗ YW )(k)→ E(X,YV⊕W )(k),

where the first map is the isomorphism of lemma 5.7 and the second one is
induced by the isomorphism YV ⊗ YW ' YV⊕W . �

Remark 5.9. — We make no use of proposition 5.8 in this article. We
have stated it only to justify that it is a priori not worthy to care about
the coproduct on E(X,Y ) as we claimed it in the introduction. Indeed,
as observed in section 5.1, if we know E(X,Y ) as a Pk-graded algebra,
the coproduct is determined by the product (thus, on our computation
in section 15, the obvious candidate for the coproduct is the good one!).
Notice that such a reasoning does not work if one restricts to computing the
unparameterized extension groups Ext∗Pk

(X∗, Y ∗) = E(X,Y )(k), because
the functoriality is needed to recover the coproduct.
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Part II. Extension groups between S, Λ, Γ,
and bar constructions

In this part, k is a commutative ring. We compute the Pk-graded alge-
bras E(S,Λ) and E(S,Γ) in terms of the homology of the (iterated) bar
constructions of Γ. We first introduce regrading functors

Rα : {Pk-dg-alg} → {Pk-dg-alg}.

These functors automatically take care of all the strange signs which arise
in the computations. Then, we prove that E(S,Λ) and E(S,Γ) are equal
to the homology of the Pk-dg-algebras tR2i+1B(Γ[2i]) and R2i+2B

2(Γ[2i]).
This is done in theorem 7.5, which generalizes the main theorem of [1](3) .
The key point in the proof is the interchange property of proposition 7.2,
which is very specific to exponential functors.

6. Regrading functors

Definition 6.1. — Let α be an integer and let
(
A, η,m, ∂

)
be a strict

polynomial differential graded algebra. The regraded algebra is the algebra
(RαA,Rαη,Rαm,Rα∂) defined by the following formulas.

(i) (RαA)i,d = Ai+αd,d.
(ii) Rαη = η

(iii) Rαm : (RαA)i,d ⊗ (RαA)j,e → (RαA)i+j,d+e equals (−1)α(i+d)em.
(iv) Rα∂ : (RαA)i,d → (RαA)i−1,d equals (−1)αd∂.

Let V ∈ Vk be a finitely generated projective k-module, and let x, y be a
pair of homogeneous elements of the weighted graded k-module A(V ). We
denote by |x| the degree of x in A(V ) and by w(x) its weight. We denote by
sαw(x)x and sαw(y)y the same elements, viewed as elements of the weighted
graded k-module RαA(V ). Then the definitions of the product and of the
differential take the more suggestive form (where the signs which appear
are determined by the usual Koszul sign rule, see e.g. [14, Chap 1]):

sαw(x)x · sαw(y)y := (−1)α|x|w(y)sαw(x⊗y)x · y,

(Rα∂)(sαw(x)x) := (−1)αw(x)sαw(x)(∂x).

It is not hard to see from these formulas that the definition of RαA makes
sense, i.e. that the product Rαm is associative, and the differential Rα∂ is
a derivation.
(3)The main theorem of [1] corresponds to the case of E(S, Λ)(k) (hence without func-
toriality), without the algebra structure.
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Definition 6.2. — If f : A → B is a morphism of Pk-dg-algebras, we
define Rαf by (Rαf)i,d = fi+αd,d. This yields a regrading functor:

Rα : {Pk-dg-alg} → {Pk-dg-alg}.

Let us denote by H the homology functor H : {Pk-dg-alg} → {Pk-g-alg},
and recall from section 4.2 the convolution algebra functor H(C,−). It is
easy to check that the regrading functor commutes with these two functors.

Lemma 6.3. — Let α be an integer and let C be a Pk-coalgebra. For
all Pk-dg-algebra A, we have equalities of Pk-graded-algebras, and Pk-
differential graded algebras:

Rα(HA) = H(RαA), RαH(C,A) = H(C,RαA).

If α is even, one easily checks that Rα is an isomorphism of categories,
with inverseR−α. This is not the case if α is odd. We first need to introduce
a new definition.

Definition 6.4. — Let (A, η,m, ∂) be Pk-dg-algebra. The weight
twisted algebra tA is the Pk-dg-algebra (A, η, tm, ∂) where tm : Ai,d⊗Aj,e →
Ai+j,d+e equals (−1)dem. If f : A→ B is a morphism of algebras, we define
tf = f . This yields an involutive functor:

t : {Pk-dg-alg} → {Pk-dg-alg}.

Lemma 6.5. — Let A,B be Pk-dg-algebras, and let ε ∈ {0, 1}.
(i) A is (1, ε)-commutative if and only if tA is.
(ii) There is an isomorphism of Pk-dg-algebras t(A⊗εB) ' (tA)⊗ε (tB).

Proof. — Let V ∈ Vk, and let a, a′ ∈ A(V ) and b, b′ ∈ B(V ) be homoge-
neous elements. Let us prove (i). Since t is an involution, it suffices to prove
the only if part. So we assume that A is (1, ε)-commutative. We denote by
a · ta′ the product in A(V ) and by a · a′ the product in A(V ). We have:

a · ta′ = (−1)w(a)w(a′)a · a′ = (−1)w(a)w(a′)+|a||a′|+εw(a)w(a′)a′ · a

= (−1)|a||a
′|+εw(a)w(a′)a′ · ta.

Thus, tA is (1, ε)-commutative. Now we turn to (ii). Let ψ(x, y) = w(x)w(y).
We define:

Ψ: t(A⊗ε B) → (tA)⊗ε (tB)
a⊗ b 7→ (−1)ψ(a,b)a⊗ b .

It is straightforward to check that Ψ preserves the degrees, the weights, the
units and the differentials. We have to check that Ψ is multiplicative. We
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denote f(x, y) = |x||y| + εw(x)w(y). In t(A ⊗ε B), the product is defined
by:

(a⊗ b) · (a′ ⊗ b′) = (−1)ψ(a⊗b,a′⊗b′)+f(a′,b)aa′ ⊗ bb′.

In (tA)⊗ε (tB), the product is defined by:

(a⊗ b) · (a′ ⊗ b′) = (−1)ψ(a,b)+ψ(a′,b′)+f(a′,b)aa′ ⊗ bb′.

Then Ψ((a ⊗ b) · (a ⊗ b′)) equals Ψ(a ⊗ b) · Ψ(a ⊗ b′) up to a (−1)n sign,
where n equals the sum:

ψ(a⊗b, a′⊗b′)+2f(a′, b)+ψ(aa′, bb′)+ψ(a, b)+ψ(a′, b′)+ψ(a, a′)+ψ(b, b′).

One readily checks that this sum is even. Hence Ψ is multiplicative. �

Lemma 6.6. — Let α be an integer. We have tRα = Rαt. If α is even,
we have R−αRα = Id. If α is odd, we have R−αRα = t.

Proof. — The proof that t and Rα commute is straightforward. We con-
centrate on the identification of R−αRα. Let A be a Pk-dg-algebra. It is
clear that R−αRαA = (A, η,R−αRαm, ∂), so we only have to identify the
product of R−αRαA. Let V ∈ Vk, and let x, y be homogeneous elements
in A(V ). We define $(x) = αw(x). Then we have:

s−$(x)s$(x)x · s−$(y)s$(y)y

= (−1)−$(y)($(x)+|x|)s−$(x⊗y)(s$(x)x · s$(y)y),

= (−1)−$(y)$(x)s−$(x⊗y)s$(x⊗y)x · y.

If α is even, the sign in the latter equality equals one, so R−αRαA = A. If
α is odd, the sign equals (−1)w(x)w(y) so R−αRαA = tA. �

In particular, Rα is an isomorphism of categories. The behavior of Rα
with respect to graded commutativity also depends on the parity of α.

Lemma 6.7. — Let α be an integer, let ε ∈ {0, 1} and let ε ∈ {0, 1} such
that ε = ε+ 1 mod 2. Let A be a Pk-dg-algebra.

• If α is even, then RαA is (1, ε)-commutative if and only if A is
(1, ε)-commutative.

• If α is odd, then RαA is (1, ε)-commutative if and only if A is
(1, ε)-commutative.

Proof. — By lemma 6.5 t preserves (1, ε)-commutativity. Thus, by lem-
ma 6.6, it suffices to prove the “only if” part of the statements. Let us
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assume that A is (1, ε)-commutative. Let V ∈ Vk. Let x, y be homogeneous
elements of A(V ). We define $(x) = αw(x). Then we have:

s$(y)y · s$(x)x = (−1)|y|$(x)s$(x⊗y)y · x

= (−1)|y|$(x)+|x||y|+εw(x)w(y)s$(x⊗y)x · y,

s$(x)x · s$(y)y = (−1)|x|$(y)s$(x⊗y)x · y.

Thus s$(y)y · s$(x)x equals s$(x)x · s$(y)y up to a (−1)n sign, with

n =|y|$(x) + |x||y|+ |x|$(y) + εw(x)w(y)
=(|x|+$(x))(|y|+$(y)) + (α+ ε)w(x)w(y) mod 2.

But |x| + $(x) is the degree of s$(x)x ∈ RαA(V ), thus the last equality
shows that RαA is (1, ε+ α)-commutative. �

Lemma 6.8. — Let α be an integer, let ε ∈ {0, 1} and let ε ∈ {0, 1} such
that ε = ε+ 1 mod 2. If α is even, then for all Pk-dg-algebras A, B there
is an isomorphism of Pk-dg-algebras:

Rα(A⊗ε B) ' Rα(A)⊗ε Rα(B).

If α is odd, there is an isomorphism of Pk-dg-algebras:

Rα(A⊗ε B) ' Rα(A)⊗ε Rα(B).

Proof. — We do the proof for α odd (the case α even is elementary).
We define $(x) = αw(x). If a, a′ ∈ A and b, b′ ∈ B are homogeneous
elements, we denote by s$(a⊗b)a⊗b the element a⊗b viewed as an element
of Rα(A ⊗ε B), and by (s$(a)a) ⊗ (s$(b)b) the element a ⊗ b viewed as
an element of Rα(A) ⊗ε Rα(B). We also define φ(a, b) = |a|$(b). It is
straightforward to check that the map

Φ: Rα(A⊗ε B) → Rα(A)⊗ε Rα(B)
s$(a⊗b)a⊗ b 7→ (−1)φ(a,b)(s$(a)a)⊗ (s$(b)b)

preserves the degrees, the weights, the units and the differentials. We have
to prove that Φ preserves the products. Let us write for short f(x, y) =
|x||y|+ εw(x)w(y) and g(x, y) = ($(x) + |x|)($(y) + |y|) + εw(x)w(y). The
multiplication in Rα(A⊗ε B) is defined by:(

s$(a⊗b)a⊗ b
)
·
(
s$(a′⊗b′)a′ ⊗ b′

)
= (−1)φ(a⊗b,a′⊗b′)s$(a⊗b⊗a′⊗b′)(a⊗ b) · (a′ ⊗ b′),

= (−1)φ(a⊗b,a′⊗b′)+f(a′,b)s$(aa′)+$(bb′)(aa′)⊗ (bb′).
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The multiplication in Rα(A)⊗ε Rα(B) is defined by:(
s$(a)a⊗ s$(b)b

)
·
(
s$(a′)a′ ⊗ s$(b′)b′

)
= (−1)g(b,a

′)
(
s$(a)a · s$(a′)a′

)
⊗
(
s$(b)b · s$(b′)b′

)
,

= (−1)g(b,a
′)+φ(a,a′)+φ(b,b′)(s$(aa′)aa′)⊗ (s$(bb′)bb′).

Thus, we obtain:

Φ(s$(a⊗b)a⊗b ·s$(a′⊗b′)a′⊗b′) = (−1)nΦ(s$(a⊗b)a⊗b) ·Φ(s$(a′⊗b′)a′⊗b′),

where the integer n equals the following sum:

g(b, a′) + φ(a, a′) + φ(b, b′) + φ(a⊗ b, a′ ⊗ b′) + f(a′, b)
+ φ(a, b) + φ(a′, b′) + φ(aa′, bb′).

One readily checks that this sum is even. So Φ preserves products. �

We finish this section by an explicit computation involving Rα. Recall
that X[i] denotes the Pk-graded algebra with Xd in degree di and weight
d, equipped with multiplication given by the canonical maps Xd ⊗Xe →
Xd+e. We also denote by X[i](r) the Pk-graded algebra X[i] precomposed
by the Frobenius twist (so it has Xd (r) in degree di and weight pd).

Lemma 6.9. — Let X be S,Λ or Γ. Assume that α is even or that i is
even. Then we have the following equalities of Pk-graded algebras.

Rα

(
X[i](r)

)
= X[i− αpr].

Assume that both α and i are odd. Then we have the following equalities
of Pk-graded algebras.

Rα

(
X[i](r)

)
= t
(
X[i− αpr](r)

)
.

Proof. — The equalities of lemma 6.9 are straightforward as equalities
of graded strict polynomial functors. Let us identify the multiplication
on Rα

(
X[i](r)

)
. Let V ∈ Vk and let x, y be homogeneous elements in

X[i](r)(V ). Then:

sαw(x)x · sαw(y)y = (−1)α|x|w(y)sαw(x⊗y)x · y.

If α is even the sign equals 1. If alpha is odd, and i is even, all elements
of X[i](V ) are in even degree, so the sign also equals 1. If α and i are
odd, then α|x| = w(x) mod 2, so the sign equals (−1)w(x)w(y). Whence
the result. �
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7. Bar constructions and extension groups

7.1. Recollections of bar constructions

Let A be a differential graded augmented k-algebra (dga-k-algebra). We
denote by ε its augmentation and by A′ = ker ε the augmentation ideal
of A. The degree of an homogeneous element a ∈ A is denoted by |a|. The
(reduced, normalized) bar construction over A is the differential graded
coaugmented k-coalgebra BA defined as follows see e.g. [15, X.10] or [14,
Chap. 2].

• BA equals
⊕

n>0A
′⊗n as a k-module.

• A scalar λ of k = A′
⊗0 is denoted by λ[] and has degree 0. For

n > 1, let ai be homogeneous elements of A, 1 6 i 6 n. The
element a1 ⊗ · · · ⊗ an ∈ A′

⊗n is denoted by [a1| · · · |an] and has
degree n+

∑
|ai|.

• The counit is the map BA� A′
⊗0 = k, and the coaugmentation is

the map k = A′
⊗0

↪→ BA.
• The differential ∂ : BAk → BAk−1 sends an element [a1| · · · |an] to
the sum:
n−1∑
i=1

(−1)ei [a1| · · · |aiai+1| · · · |an]−
n∑
i=1

(−1)ei−1 [a1| · · · |∂ai| · · · |an],

where e0 = 0 and for i > 1, ei equals i+
∑
j6i |ai|.

• The coproduct ∆: BA → BA ⊗ BA sends an element [a1| · · · |an]
to the sum

n∑
i=0

[a1| · · · |ai]⊗ [ai+1| · · · |an].

When A is graded commutative, we can define a “shuffle product” on BA,
which makes BA into a cdga-k-algebra. So we can iterate bar constructions,
and we denote by B

n
A the n-th iterated bar construction of A. To be

more specific, if ai are homogeneous elements of A, the shuffle product
[a1| · · · |ap] ∗ [ap+1| · · · |ap+q] equals∑

ε(σ) [aσ−1(1)| · · · |aσ−1(p+q)]

where the sum is taken over all (p, q)-shuffles σ, and ε(σ) is the Koszul sign
such that x1 ∧ · · · ∧ xn = ε(σ)xσ(1) ∧ · · · ∧ xσ(n) in the exterior algebra
Λ(x1, . . . , xn) over generators xi with degree |ai|+ 1.
We have presented the (reduced, normalized) bar construction of a dga-

k-algebra, but the formulas above also make sense for the other categories
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of algebras described in section 3 (if the algebras have weights, the weights
in BA are defined by w([a1| · · · |an]) =

∑
w(ai)). In particular, for Pk-cdga-

algebras, iterated bar constructions yield functors (n > 0):

{Pk-cdga-alg}
B
n

−−→ {Pk-cdga-alg}.

7.2. Bar constructions of symmetric and exterior algebras

Let us now concentrate on the concrete example of the bar constructions
of symmetric and exterior algebras. Recall that for all integer i, S[i] (resp.
Λ[i]) denotes the Pk-graded algebra, with Sd (resp. Λd) in degree di and
weight d. We can write down explicitly B(S[i]). For d > 0, the homogeneous
part of weight d of B(S[i]) is the following complex of strict polynomial
functors, which we denote by I•,d:

⊗d︸︷︷︸
degree
d(i+1)

→
d−2⊕
k=0

S1⊗k⊗S2⊗S1⊗d−k−2 → · · · → Sd−1 ⊗ S1

⊕S1 ⊗ Sd−1 → Sd︸︷︷︸
degree
di+1

.

Similarly, one gets the homogeneous part of weight d of B(Λ[i]) by replacing
symmetric powers by exterior ones in the complex above.
Assume that S[i], resp. Λ[i], are graded commutative (i.e. assume that

i is even, resp. odd, or that k has characteristic 2). Then the canonical
inclusions Λd ↪→ ⊗d, resp. Γd ↪→ ⊗d, define morphisms of Pk-cdga-algebras:

Λ[i+ 1] ↪→ B(S[i]) and Γ[i+ 1] ↪→ B(Λ[i]).

These morphisms are quasi-isomorphisms, see e.g. [14, Chap 3, ex 3.2.5].
In particular, the complex I•,d drawn above yields a coresolution of Λd by
symmetric powers.
Let us recall from [15, X Th. 11.2] that bar constructions preserve quasi

isomorphisms of algebras. Hence, the composite

Γ[i+ 2] ↪→ B(Λ[i+ 1]) ↪→ B
2(S[i])

is a quasi isomorphism. So the homogeneous part of weight d of B2(S[i])
yields a complex J•,d of symmetric powers, whose homology equals Γd in
degree d(i+ 2) (and zero in other degrees). The complex J•,d has the form:

⊗d︸︷︷︸
degree
d(i+2)

→
d−2⊕
k=1
⊗d → · · · → Sd−1 ⊗ S1

⊕S1 ⊗ Sd−1 → Sd︸︷︷︸
degree
di+2

.
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By lemma 2.3, we can use the complexes I•,d and J•,d to compute E(F, Sd)
and E(F,Λd) when F takes values in the category Vk of finitely generated
projective k-modules.

Proposition 7.1. — Let k be a commutative ring, let C be a Pk-
coalgebra whose homogeneous components Cd,i take values in Vk, and let i
be a nonnegative integer. The Pk-graded algebras E(C,Λ) and E(C,Γ) are
respectively isomorphic to the homology of the convolution Pk-dg-algebras
tR2i+1H(C,B(S[2i])) and R2i+2H(C,B2(S[2i])).

Proof. — We prove the case of E(C,Λ), the other case is similar. Let Kd

be a coresolution of Λd by symmetric powers. Then E(C0,d,Λd) is the ho-
mology of the complex H(C0,d,Kd), and the convolution product is given
on the cochain level by the composite:

H(C0,d,Kd)⊗H(C0,e,Ke)
⊗−→ H(C0,d ⊗ C0,e,Kd ⊗Ke)

H(∆d,e,m̃)−−−−−−−→ H(C0,d+e,Kd+e),

where ∆d,e is the comultiplication C0,d+e → C0,d⊗C0,e and m̃ : Kd⊗Ke →
Kd+e is a lifting of the multiplication m : Λd ⊗ Λe → Λd+e.

Consider the Pk-dg-algebra tR2i+1(BS[2i]). It is quasi isomorphic to
tR2i+1(Λ[2i + 1]) = Λ. So we may take for Kd the homogeneous part of
weight d of this Pk-dg-algebra (this is I•,d, shifted), and for m̃

the multiplication of tR2i+1(BS[2i]). With this choice, the composite above
is the convolution product of H(C, tR2i+1(BS[2i])). Thus, E(C,Λ) equals
the homology of H(C, tR2i+1(BS[2i])). By lemma 6.3, the algebras
tR2i+1H(C,BS[2i]) and H(C,tR2i+1(BS[2i])) are equal, whence the re-
sult. �

7.3. The interchange property

This subsection is the core of our computation. Recall from section 4.2
that if C is a coaugmented commutative Pk-coalgebra, we have a convolu-
tion algebra functor:

H(C,−) : {Pk-cdga-alg} → {Pk-cdga-alg}.

The following key result asserts that when C is exponential, the functor
H(C,−) commutes with the bar construction functor B : {Pk-cdga-alg} →
{Pk-cdga-alg}.
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Proposition 7.2 (Interchange property). — Let k be a commutative
ring, let E = {E0,d}d>0 be a commutative exponential functor concentrated
in degree zero, and let A = {Ai,d}i,d>0 be a Pk-cdga-algebra, such that the
functors Ai,d take values in Vk. Assume that H(E,A) takes k-projective
values. Then there is an isomorphism of Pk-cdga-algebras, natural with
respect to A:

H(E,BA) ' BH(E,A).

Remark 7.3. — We encourage the reader to try to prove a statement
similar to proposition 7.2 in the framework of Schur algebras to understand
the subtle difference between strict polynomial functors and modules over
Schur algebras.

Remark 7.4. — If k is a Dedekind domain (e.g k is a field or Z), and
A has k-projective values, the technical assumption that H(E,A) has k-
projective values is always satisfied.

Proof of proposition 7.2. — Let us write for short [X] instead ofH(E,X).
If A′ denotes the augmentation ideal of A, then [A′] is the augmentation
ideal of [A]. Lemma 5.5 yields an isomorphism θn : [A′]⊗n → [A′⊗n]. Tak-
ing the direct sum over all n > 0, we get an isomorphism of graded strict
polynomial functors: θ : B[A] '−→ [BA], natural with respect to A. We have
to check that θ is an isomorphism of Pk-cdga-algebras. It is obvious that θ
preserves augmentations.
By definition, the product ? in the convolution algebra [A] is the compos-

ite [m]◦θ2, wherem is the multiplication of A. Thus we have a commutative
diagram for all k 6 n:

[A′]⊗n '
θn

//

[A′]⊗k⊗?⊗[A′]⊗n−k−2

��

[A′⊗n]

[A′⊗k⊗m⊗A′⊗n−k−2]
��

[A′]⊗k ⊗ [A′]⊗ [A′]⊗n−k−2 '
θn−1

// [A′⊗n−1].

By definition of the differentials of [BA] and B[A], this commutative dia-
gram implies that θ commutes with the differentials.
Let σ ∈ Sn. Since E is commutative, we have a commutative diagram:

[A′]⊗n '
θ

//

σ

��

[A′⊗n]

[σ]
��

[A′]⊗n '
θ

// [A′⊗n]
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where σ : [A′]⊗n → [A′]⊗n and [σ] : [A′⊗n]→ [A′⊗n] are the maps induced
by permuting the factors of the tensor products. By definition of the prod-
ucts of B[A] and [BA], this commutative diagram implies that θ is an
isomorphism of algebras. Whence the result. �

Theorem 7.5. — Let k be a commutative ring, and let i an integer.
The Pk-graded algebras E(S,Λ) and E(S,Γ) are respectively computed by
the homology of the Pk-dg-algebras tR2i+1B(Γ[2i]) and R2i+2B

2(Γ[2i]).

Proof. —We first observe thatH(S, S[2i]) = Γ[2i], hence has k-projective
values. Thus, proposition 7.2 and lemma 4.6 yield an isomorphism:

H(S,B(S[2i])) ' BH(S, S[2i]) ' B(Γ[2i]).

But Γ[2i], hence also B(Γ[2i]) has k-projective values. Thus, by the iso-
morphism above, H(S,B(S[2i])) has k-projective values. Applying propo-
sition 7.2 again, we get an isomorphism:

H(S,B2(S[2i])) ' BH(S,B(S[2i])) ' B2(Γ[2i]).

Now the result follows from proposition 7.1. �

Remark 7.6. — In proposition 7.2, it is essential that E is commuta-
tive. If this is not the case, then H(E,A) is not graded commutative, so
BH(E,A) does not bear a multiplication. However, it is easy to check (same
proof) that if we drop the commutativity of E, we still have an isomorphism
of complexes of strict polynomial functors:

H(E,BA) ' BH(E,A).

Applying this to E = A = Λ, we get an isomorphism of complexes
H(Λ, BS) ' BH(Λ, S). But H(Λ, S) ' Λ, so the homology of H(Λ, BS)
equals Γ[1] (as a graded strict polynomial functor). Since the homology of
R1(H(Λ, BS)) computes E(Λ,Λ) (same proof as proposition 7.1, without
taking the algebra structure into account), we finally obtain (cf. lemma 4.6):

E(Λ,Λ) = H(Λ,Λ) ' Γ.

This provides a proof that there are no extension groups between Λ and Λ,
as asserted in the introduction.
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Part III. Homology of Eilenberg-Mac Lane spaces

In theorem 7.5 in part II, we proved that E(S,Λ) and E(S,Γ) are equal
(up to regrading) to the homology of iterated bar constructions of Γ[2]. In
part III, we tackle the following problem.

Problem 7.7. — Compute the homology of the differential graded Pk-
algebras Bn(Γ[2]).

8. Bar constructions and Eilenberg-Mac Lane spaces

Akin observed [1] that over a field k, the homology of BΓ(k[2]) can be
interpreted as the dual of the rational cohomology of the additive group,
computed in [6]. However, this approach solves problem 7.7 only for n = 1
and when the ground ring k is a field. To solve problem 7.7 in general,
we rather interpret the homology of Bn(Γ[2]) as the singular homology of
some Eilenberg Mac Lane (EML) spaces. Indeed, for an abelian group π,
the singular homology with coefficients in k of the EML space K(π, n) is
isomorphic [8] to the homology of Bn(kπ), where kπ denotes the group
algebra of π. When π is free abelian, we can choose a k-linear section of
the canonical map kπ � π⊗Zk. By the universal property of the symmetric
algebra, this section induces a morphism of k-algebras ψ : S(π⊗Z k)→ kπ.

Proposition 8.1. — Let k be a commutative ring, let π be a free
abelian group, and let ψ : S(π ⊗Z k) → kπ be a morphism of k-algebras
build from a section of the canonical map kπ � π⊗Zk. Then for all positive
integers n, the map

B
n(ψ) : Bn(S(π ⊗Z k))→ B

n(kπ)

is a quasi-isomorphism. It is not natural with respect to π, however if k is
a field, the map H(Bn(ψ)) induced on homology is natural with respect
to π.

Proof. — Let us first prove that B(ψ) is a quasi-isomorphism. Let s
denote the section of the canonical map q : kπ � π ⊗Z k. Since all the
elements of B(kπ)1 = kπ are cycles and the differential graded algebra
B(kπ) is graded commutative, products yield a morphism of differential
graded k-algebras (take the trivial differential on the left hand side)

Λ(s) : Λ(π ⊗Z k[1])→ B(kπ).
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It is well known that Λ(s) is a quasi-isomorphism, see e.g. [3, V.6 Th 6.4(ii)].
Now B(ψ) is a morphism of algebras, so Λ(s) factors as:

Λ(π ⊗Z k[1]) ↪→ B(S(π ⊗Z k)) B(ψ)−−−→ B(kπ)

As recalled in section 7.2 the first map is a quasi-isomorphism, and since
Λ(s) is a quasi-isomorphism, so is B(ψ). Bar constructions preserve quasi-
isomorphisms, so for all n > 1, Bn(ψ) is a quasi-isomorphism.

It remains to show that the map induced on homology by Bn(ψ) is natu-
ral with respect to π if k is a field. For this we will rely on the computations
of Cartan [4]. These computations will be explained into details in sec-
tion 10. For the present proof we only need the following facts. The homol-
ogy of the bar constructions Bn(A) of an algebra A are equipped with some
homological operations (divided powers, transpotences and suspensions),
which are natural with respect to A. The homology of Bn(kπ)) is com-
puted in the following way. First, there is an isomorphism H1(B(kπ)) ' π.
Applying various homology operations to H1(B(kπ)), one then obtains
a natural graded subspace M(π) of the homology of Bn(kπ). Since this
homology has divided powers, we obtain a natural morphism of algebras
U(M(π))→ H∗(B

n(kπ)), where U denotes a universal divided power alge-
bra. Cartan’s theorems finally say that this morphism is an isomorphism.
By following the same receipe, starting from H1(BS(π⊗Z k)) ' π, we con-
struct a natural morphism of algebras U(M(π)) → H∗(B

n(S(π ⊗Z k))).
But ψ is a morphism of algebras and H1(B(ψ)) is a natural isomorphism
(by its definition it identifies with the identity map of π), hence we have a
commutative diagram:

U(M(π))
(a)

vvnnnnnnnnnnnn
(b)
' &&MMMMMMMMMMM

H(Bn(S(π ⊗Z k)))
H(Bn(ψ))
'

// H(Bn(kπ))

.

In this diagram the maps (a) and (b) are natural by construction, and (b)
and H(Bn(ψ)) are isomorphisms. Hence all the maps are natural isomor-
phisms. �

Remark 8.2. — Let π be an abelian group. The fact that the homology
of the bar constructions BnS(π ⊗Z k) and B

nkπ are isomorphic is well
known [7, 4.16]. The fact that we can build an isomorphism natural with
respect to π is less known (and it is actually false if π is an arbitrary abelian
group).
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Let us denote for short by H(n, k) the functor which sends a free abelian
group π to the graded algebra Hsing

∗ (K(π, n),k) = H∗(B
n(kπ)). Proposi-

tion 8.1 has the following consequence.
Corollary 8.3. — Let n be a nonnegative integer and let π be a free

abelian group. If k = Z, there is an isomorphism of graded algebras

H(BnΓ(π[2])) ' H(n+ 2,Z)(π).

If p is a prime and k = Fp, there is a FFp -graded algebra H(n,Fp) such
that there is an isomorphism of graded algebras, natural with respect to π:

H(n,Fp)(π) ' H(n,Fp)(π/pπ),

and an isomorphism of FFp -graded algebras:

H(BnΓ[2]) ' H(n+ 2,Fp).

Corollary 8.3 shows that we can recover the homology of Bn(Γ[2]) as
a Fk-graded algebra (resp. as a graded algebra) when the ground ring k
is Fp (resp. Z) from the algebraic topology computations of [4]. But for
our purposes, we need more. We need the Pk-graded algebra structure of
the homology of Bn(Γ[2]) (or at least the data of the weights) in order
to be able to apply our regrading functors from section 6. We also wish to
compute the homology of Bn(Γ[2]) over an arbitrary ground field k (not just
a prime field). So in this part of the paper, we elaborate on Cartan’s results
to obtain a more satisfactory answer to problem 7.7. Our first main result
is theorem 10.14, which solves problem 7.7 when k is an arbitrary field. Our
second main result is theorem 11.13, which describes H∗(B

n(Γ(Zm [2]))) as
a graded algebra with weights for k = Z. We deduce from these theorems
an explicit computation of E(S,Λ) and E(S,Γ). Section 9 is a preparatory
work for our first main result.

9. Strict polynomial structures on divided power algebras

Let k be a field of prime characteristic. If a functor F ∈ Fk is graded, we
can form the Fk-graded algebra:

U(F ) = Γ(Feven)⊗ Λ(Fodd)

We denote this algebra by U(F ) because it satisfies a universal property,
see theorem 10.2 below. Recall from section 3 the forgetful functor

U : {Pk-graded alg.} → {Fk-graded alg.}.

In this section, we determine all the Pk-graded algebras A such that UA =
U(F ), if F is additive. We also do the same for Γ(F ) in characteristic 2.

TOME 64 (2014), FASCICULE 6



2600 Antoine TOUZÉ

9.1. Strict polynomial structures on U(F )

We first need a few results about additive strict polynomial functors. We
say that a functor F ∈ Pk is additive if the underlying functor UF ∈ Fk is
additive.

Lemma 9.1. — Let k be a field of prime characteristic.
(Classification): If F ∈ Pk is additive with finite dimensional values,

then F either equals zero or is a finite direct sum of Frobenius twists
I(r) (with possibly different r > 0).

(Retracts): Let F,G be additive functors with finite dimensional val-
ues, and let f ∈ HomPk(F,G). Then (i) and (ii) are equivalent.
(i) There exists V ∈ Vk such that the k-linear map fV : F (V ) →

G(V ) is surjective
(ii) There exists ι ∈ HomPk(G,F ) such that f ◦ ι = IdF .

Proof. — To prove the classification, we can assume that F is homoge-
neous of degree d. If d = 0, then F is constant and additive, hence F = 0.
So let us assume that d > 1. There are two cases.

Case 1: d is not a power of p. The map
Endk(k) → Endk(F (k))

f 7→ F (f)
is given by a homogeneous polynomial of degree d, which is additive. Since
d is not a power of p, the only such polynomial is the zero polynomial.
Thus, F sends the identity map of k to zero. So the identity map of F (k)
equals zero. Thus F (k) = 0. By additivity of F this implies that F = 0.

Case 2: d = pr, for r > 0. Assume that F 6= 0 and fix an integer n > pr.
Recall from [12, Cor 3.13] that evaluation on kn, yields an equivalence of
categories Ppr,k ' S(n, pr)−mod (where S(n, pr) is the Schur algebra). So
it suffices to prove that F (kn) is a direct sum of copies of (kn)(r).
Let ki denote the vector space k acted on by the torus G×nm by

(λ1, . . . , λn) · x = λi · x. Since F is homogeneous of degree pr, F (ki) is
acted on by G×nm by (λ1, . . . , λn) · x = λp

r

i · x. Additivity of F yields a
G×nm -equivariant isomorphism

F (kn) = F (
⊕

i6n ki) '
⊕

i6n F (ki).

As a consequence, all the weights of the S(n, pr)-module F (kn) are of the
form (µ1, . . . , µn) with all µi = 0 but one which equals pr. In particular, if
S1(kn), . . . , SN (kn) is the composition series of F (kn), the Si(kn) are finite
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direct sums of simples with highest weight (pr, 0, . . . , 0), that is of (kn)(r).
We know (see e.g. [12]) that Ext1((kn)(r), (kn)(r)) = 0. Thus there cannot
be nontrivial extensions between finite direct sums of (kn)(r). This implies
that the composition series of F (kn) has length N = 1. Thus F (kn) is a
finite direct sum of copies of (kn)(r).

Finally, let us prove the characterization of retracts. We can assume that
F,G are homogeneous of degree pr, r > 1. The identity map is a basis of
HomPk(I(r), I(r)), so tensor products yield isomorphisms for k, ` > 1:

Homk(kk,k`) ' HomPk(I(r) ⊗ kk, I(r) ⊗ k`), f 7→ Id⊗f,

and the result follows. �

If A is an augmented Pk-(or Fk-)graded algebra, we denote by Q(A) the
indecomposables of A, that is Q(A) is the cokernel of the multiplication
A′⊗A′ → A′, where A′ is the augmentation ideal of A. If A is a Pk-graded
augmented algebra, then Q(A) is a graded strict polynomial functor and
UQ(A) = Q(UA). Similarly the primitives P (C) of a Pk-graded coaug-
mented coalgebra C form a graded strict polynomial subfunctor of C and
UP (C) = P (UC). The following lemma explains the link between additive
and exponential functors.

Lemma 9.2. — Let k be a field, and let E be an exponential functor. The
graded strict polynomial functors P (E) and Q(E) are additive. Moreover, if
there exists V ∈ Vk such that the composite P (E)(V ) ↪→ E(V )� Q(E)(V )
is surjective, then Q(E) is a direct summand of E.

Proof. — Let E′ be the augmentation ideal of E. Since E is exponential,
E′(V ⊕ W ) is isomorphic to E′(V ) ⊗ k ⊕ k ⊗ E′(W ) ⊕ E′(V ) ⊗ E′(W ).
Moreover, the multiplication E′(V ⊕W )⊗2 → E′(V ⊕W ) identifies through
this decomposition with the direct sum of three maps (which are induced
by multiplications):

(E′(V )⊗ k)⊗2 → E′(V )⊗ k,
(k⊗ E′(W ))⊗2 → k⊗ E′(W ),

(E′(V )⊗ k)⊗ (k⊗ E′(W ))⊕ other summands
of E′(V ⊕ W )⊗2 → E′(V )⊗ E′(W ).

The first two maps have respective cokernels Q(E)(V ) and Q(E)(W ) and
the last one is surjective. This shows that Q(E) is additive. The proof that
the primitives are additive is similar.
Finally, if the map P (E)(V ) → Q(E)(V ) is surjective for some V ∈ Vk,

then by lemma 9.1, it admits a section ι. So the compositeQ(E) ι−→ P (E) ↪→
E is a section of E � Q(E). �
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We are now ready to prove the main result of section 9.

Theorem 9.3. — Let k be a field of prime characteristic p, and for all
d > 0, let Fd ∈ Fk be a finite direct sum of nd copies of the identity functor,
and let F =

⊕
d>0 Fd The graded Pk-algebras A satisfying UA = U(F ) are

of the form:
A = Γ(Geven)⊗ Λ(Godd),

where G =
⊕

d>0Gd and each Gd ∈ Pk is a direct sum of nd Frobenius
twists I(r) (with possibly different r > 0).

Proof.

Step 1: Duality. Let E be a graded exponential (non strict polynomial)
functor. Then finding the Pk-graded algebras A such that UA = E is
equivalent to finding the Pk-graded algebras B such that UB = E] as
algebras. Indeed, if UA = E, then for all V,W ∈ Vk the composite

A(V )⊗A(W )→ A(V ⊕W )⊗2 → A(V ⊕W )

is an isomorphism (indeed, this is true for UA = E, and the forgetful
functor U reflects isomorphisms). Thus A is an exponential functor, and UA
coincides with E as an exponential functor. Equivalently, U(A]) coincides
with E] as an exponential functor. This is in turn equivalent to the fact
that B = A] is a graded strict polynomial algebra such that UB coincides
with E] as a Fk-graded algebra.

So, to prove theorem 9.3, it suffices to prove that the graded strict poly-
nomial algebras B such that UB = S(Feven) ⊗ Λ(Fodd) are of the form
S(Geven)⊗ Λ(Godd) with G as indicated.

Step 2: Indecomposables. If B is as indicated in step 1, then the
indecomposables of B are a direct summand in B. Indeed, since UB =
S(Feven)⊗Λ(Fodd), there exists V ∈ Vk, e.g. V = k, such that the composite
P (B)(V )→ B(V )→ Q(B)(V ) is surjective. Then one applies lemma 9.2.
Now, the indecomposables of B is an additive strict polynomial functor

Q(B) satisfying UQ(B) = Q(UB) = F . So by lemma 9.1, Q(B)d is a finite
direct sum of nd Frobenius twists for all d > 0.

Step 3: Universal property. The morphism of graded strict poly-
nomial functors Q(B) ↪→ B induces a morphism of Pk-graded algebras
S(Q(B)even)⊗ Λ(Q(B)odd)→ B. For all V ∈ Vk, this morphism is an iso-
morphism after evaluation on V . Hence, it is an isomorphism. Thus B is of
the form S(Geven)⊗Λ(Godd) with G = Q(B) as indicated in the statement
of theorem 9.3, which concludes the proof. �
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9.2. Strict polynomial structures on Γ(F )

Now we work over a field k of characteristic 2. If F is a graded strict
polynomial functor, then the symmetric algebra S(F ) is commutative, so
we can adapt the proof of theorem 9.3 to get the following result (the
commutativity of S(F ) is needed in the last step of the proof, the remainder
of the proof is unchanged).

Theorem 9.4. — Let k be a field of characteristic 2, and for all d > 0,
let Fd ∈ Fk be a finite direct sum of nd copies of the identity functor, and
let F :=

⊕
d>0 Fd. The graded Pk-algebras A satisfying UA = Γ(F ) are of

the form: A = Γ(G), where G =
⊕

d>0Gd and each Gd ∈ Pk is a direct
sum of nd Frobenius twists I(r) (with possibly different r > 0).

10. Explicit computations over a field

10.1. Systems of divided powers on an algebra

In this section, k is a commutative ring. We recall the basics of systems
of divided powers. The reader can take [4, Exp. 7, 8], [9, Appendix 2] as
references.

Definition 10.1. — Let A be a graded commutative k-algebra. A sys-
tem of divided powers on A is a set of maps (γr)r>0 defined over the even
degree part of A, and satisfying the following axioms:
(a) γ0(x) = 1, γ1(x) = x and γk maps Ai into Aki for i > 2.
(b) γk(x)γ`(x) =

(
k+`
k

)
γk+`(x).

(c) γk(x+ y) =
∑
i+j=k γi(x)γj(y).

(d) γk(xy) = 0 if k > 2 and x and y have odd degrees,
= xkγk(y) if k > 2 and |x| > 2 is even and |y| is even.

(e) γ`(γk(x)) = (k`)!
`!(k!)` γk`(x).

A morphism of algebras f : A→ B preserves divided powers if γk(f(x)) =
f(γk(x)) for all k.

Observe that the maps γr are not k-linear: actually, equation (b) implies
that k!γk(x) = xk, which is the reason for the name “divided powers”.

Theorem 10.2 ([4, Exp 8, Section 4]). — Let V be a graded free k-
module. There exists a unique system of divided powers on the graded
algebra U(V ) = Γ(Veven) ⊗ Λ(Vodd) such that γk(x) = x⊗k for x ∈ Veven
and k > 0.
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Moreover, for all commutative graded k-algebra A equipped with divided
powers, and all graded k-linear map f : V → A, there exists a unique
morphism of algebras f : U(V ) → A extending f and preserving divided
powers.

Theorem 10.2 is a mean to construct morphisms of algebras with a very
big image (compare with the image of the map induced by the universal
property of the free graded commutative algebra on V ). However, theo-
rem 10.2 is not so efficient in characteristic 2. For example, the graded
k-algebra Γ(V ) is graded commutative even if V is concentrated in odd de-
gree, and in that case, theorem 10.2 yields a morphism: Λ(Vodd)→ Γ(Vodd)
with quite a small image. To bypass this problem, there is a stronger notion
of divided powers for strictly anticommutative (i.e. graded commutative
with x2 = 0 if x has odd degree) algebras in characteristic 2. To avoid con-
fusion, we call this notion “strong divided powers”, although this notion is
simply called “divided powers” in the literature.

Definition 10.3. — Let A be a strictly anticommutative graded k-
algebra, for k of characteristic 2. A system of strong divided powers is a
collection of maps (γr)r>0 defined over the part of positive degree of A and
satisfying equations (a)–(e) above.

With this stronger notion of divided powers, theorem 10.2 becomes [4,
Exp 8, Thm 2 bis]:

Theorem 10.4 ([4]). — Let k be a ring of characteristic 2. Let V be
a graded free k-module. There exists a unique system of strong divided
powers on the graded algebra Γ(V ) such that γk(x) = x⊗k for x ∈ V and
k > 0.
Moreover, for all strictly anticommutative graded k-algebra A equipped

with strong divided powers, and all graded k-linear map f : V → A, there
exists a unique morphism of algebras f : U(V ) → A extending f and pre-
serving divided powers.

10.2. Homology operations in bar constructions

Let k be a commutative ring, and let A be a cdg-k-algebra. The homology
of BnA is equipped with the following homology operations, natural with
respect to A.

(1) Suspension. For all n > 0 and all k > 0, there is a k-linear sus-
pension operation [4, Exp 6, sections 1 and 2]

σ : Hk(BnA)→ Hk+1(Bn+1
A).
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(2) Transpotence. Assume k has prime characteristic p 6= 2. Then
for all n > 1 and all k > 1 there is an additive (hence k-linear if
k = Fp) transpotence operation [4, Exp 6, section 4]

φp : H2k(BnA)→ Hp2k+2(Bn+1
A).

(3) Divided powers. Assume that A is strictly anticommutative(4)

(i.e. a2 = 0 for a of odd degree). Then for all n > 1, there is a
system of divided powers (γr)r>0 on H(BnA) [4, Exp 7, Thm 1
and section 5]. If k has characteristic 2, there is a system of strong
divided powers on H(BnA) [4, Exp 7, section 8].

In our computation of B(Γ[2]) in theorem 10.14, we shall need the following
complement on homological operations.

Proposition 10.5. — Let k be a commutative ring, and let A be a cdg-
k-algebra with weights. The homology of Bn(A) is a wg-k-algebra, and the
homological operations have the following behavior with respect to weights.
The suspension preserves the weights. The transpotence φp multiplies the
weights by p, and the divided power operation γr multiplies the weights
by r.

Proof. — To prove proposition 10.5, we have to go back to the definition
of the homology operations. Let us denote by C the wdg-k-algebra C =
B
n
A. Let us first treat the case of the suspension. It is defined on the chain

level by the map C ↪→ BC c 7→ [c]. So it preserves the weights.
The cases of the transpotence and divided powers are slightly more in-

volved. Recall from [4, Exposes 3 et 4] that there is a wdg-k-algebra BC
characterized by the following properties.

(i) BC := C ⊗ BC as a graded algebra with weights. Thus, both C

and BC can be viewed as weighted graded subalgebras of BC.
(ii) BC is equipped with a weight-preserving differential ∂, such that

following maps are morphisms of wdg-k-algebras:

C
Id⊗1−−−→ BC, BC

ε⊗Id−−−→ BC.

(B) For all k > 1, the composite BCk+1 ↪→ BCk+1
∂−→ BCk is injective

and induces an isomorphism BCk+1 ' Z(BC)k onto the cycles of
degree k of BC (in particular, Hi(BC) = 0 for i > 0).

The transpotence φp is defined on the chain level as follows [4, p. 6-05].
Let c ∈ ZC2k ⊂ Z(BC)2k be a cycle representing a cohomology class
α ∈ H2k(C). There is an x ∈ BC2k such that ∂x = c. Then there is an

(4)This applies to BA, for A graded commutative
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element y ∈ Z(BC)p2k+2 representing φp(α) which satisfies ∂y = cp−1 ∗ ∂x
(∗ denotes the product in BC). So the weight w(φp(α)) of φp(α) satisfies:

w(φp(α)) = w(y) = w(cp−1) + w(x) = pw(c) = pw(α).

The divided powers are defined on the chain level BC by [4, Exp 7, proof
of Thm 1]: γ1(c) = c and ∂γr(c) = ∂c ∗ γr−1(c) for r > 1. Since ∂ preserves
the weights w(γr(c)) = w(c) + w(γr−1(c)) for r > 1 and the result follows
by induction on r. �

10.3. Cartan’s result

We are now ready to state Cartan’s computation of Hsing
∗ (K(π, n),Fp).

In view of corollary 8.3, we state the results in terms of the homology of
B
n(Γ[2]). Let us assume first that p 6= 2.

Definition 10.6. — A p-admissible word(5) is a finite sequence w of
letters σ, φp and γp starting on the left with the letter σ or φp, and finishing
on the right with the letter σ, satisfying the following property. For all letter
φp or γp of w, the number of σ on the right of the letter is even. The height
of a word w is the number of letters equal to σ or φp in w. The degree
deg(w) of a word w is defined recursively by deg(α) = 0 if α is empty, and

deg(σα) = 1 + deg(α), deg(γpα) = p deg(α), deg(φpα) = p deg(α) + 2.

Example 10.7. — The p-admissible words of height 3 are the words:

σγkpσσ, k > 0, and φpγ
k
pσσ, k > 0.

(By convention γkp is empty if k = 0). Moreover, deg(σγkpσσ) = 2pk + 1
and deg(φpγkpσσ) = 2pk+1 + 2. The p-admissible words of height 4 are the
words:

σσγkpσσ, σγ
k
pφpγ

`
pσσ, and φpγkpφpγ`pσσ, for k, ` > 0,

of respective degrees 2pk + 2, 2pk+`+1 + 2pk + 1 and 2pk+`+2 + 2pk+1 + 2.

Recall that ifM is a graded Fp-vector space, U(M) denotes the universal
divided power algebra over M , i.e. U(M) = Γ(Meven)⊗ Λ(Modd).

Theorem 10.8 ([4, Exp 9, Théorème fondamental]). — Let p be an odd
prime. For all n > 0, there is an isomorphism of graded FFp -algebras

H(Bn(Γ[2])) ' U
(⊕

w

I[deg(w)]
)
,

(5)Such words are called “mots admissibles de première espèce” in [4, Exp 9, section 1].
We drop the words “première espèce” in the definition since we shall not need the “mots
admissibles de deuxième espèce” in the article.
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where the direct sum on the right hand side is taken over all p-admissible
words w of height n+ 2 and I[deg(w)] means a copy of the identity functor
I : VFp → VFp placed in homological degree deg(w).

Remark 10.9. — Let Γk denote the divided power algebra over a
field k. For all Fp-module V there is an isomorphism of graded k-algebras
ΓFp(V [2]) ⊗Fp k ' Γk(V ⊗Fp k [2]), hence an isomorphism of graded k-
algebras:

H(Bn(ΓFp(V [2])))⊗Fp k ' H(Bn(ΓFp(V ⊗Fp k [2]))).

Observe that the isomorphism above is natural with respect to the Fp-
vector space V but does not tell us anything about the functoriality with
respect to the k-vector space V ⊗Fp k. So we cannot deduce the description
of the homology of iterated bar constructions over a general field k, as a
graded Fk-algebra, from theorem 10.8.

Actually, Cartan’s result is more precise. It says that each copy of the
identity functor on the right hand side is simply obtained by applying a
suitable sequence of homology operations to I[2] = (Γ[2])2 = H2(B2

S). For
example, if n = 2, the copy of I corresponding to the word σφpγ3

pσσ is the
image of I[2] by the sequence of operations:

(Γ[2])2
γ3
p−→ (Γ[2])2p3

φp−→ H2p4+2(B(Γ[2])) σ−→ H2p4+3(B2(Γ[2])).

In general, the operations to be applied are the one needed to complete
the final letters “σσ” in order to obtain the word indexing the copy of
the identity functor I considered, starting from the right to the left. This
produces a morphism of graded functors:⊕

w I[deg(w)]→ H(Bn(Γ[2]))

and the isomorphism of theorem 10.8 is produced from this morphism and
the universal property of U .
Let us now describe the case p = 2. This case is actually simpler. The

definition of admissible words is modified as follows.

Definition 10.10. — A 2-admissible word is a finite sequence w of
letters σ, and γ2 starting with the letter σ and finishing with the letters
σσ. The height of a word w is the number of σ in w. Its degree deg(w) is
defined recursively by deg(α) = 0 if α is empty, and deg(σα) = 1 + deg(α)
and deg(γ2α) = 2 deg(α).

Example 10.11. — The 2-admissible words of height 3 are the words
σγk2σσ with k > 0, and deg(σγk2σσ) = 2k+1 + 1. The 2-admissible words of
height 4 are the words σγk2σγ`2σσ for k, ` > 0 of degree 2k+`+1 + 2k + 1.
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The analogue of theorem 10.8 over F2 takes the following form [4, Exp
10, Théorème fondamental].

Theorem 10.12 ([4]). — For all n > 0, there is an isomorphism of
graded FF2-algebras

H(Bn(Γ[2])) ' Γ
(⊕

w

I[deg(w)]
)
,

where the direct sum on the right hand side is taken over all 2-admissible
words w of height n+ 2 and I[deg(w)] means a copy of the identity functor
I : VF2 → VF2 placed in homological degree deg(w).

10.4. Homology of Bn(Γ[2]) over an arbitrary field

We are now ready to prove the main result of section 10, namely the
computation of the homology of Bn(Γ[2]), as a strict polynomial algebra,
and over an arbitrary field k. We first need to introduce a definition.

Definition 10.13. — Let w be a p-admissible word (p even or odd).
The twisting of a p-admissible word w is the number of letters equal to φp
or γp in w. We denote the twisting of w by tw.

Theorem 10.14. — Let k be a field of positive characteristic p. If p is
odd, we have an isomorphism of graded Pk-algebras:

H(Bn(Γ[2])) ' U
(⊕

w

I(tw)[deg(w)]
)
,

where the sum is taken over all p-admissible words w of height n+ 2, and
I(tw)[deg(w)] denotes a copy of the tw-th Frobenius twist functor, placed
in homological degree deg(w). If p = 2 we have an isomorphism of graded
Pk-algebras:

H(Bn(Γ[2])) ' Γ
(⊕

w

I(tw)[deg(w)]
)
,

where the sum is taken over all 2-admissible words w of height n+ 2.

Proof. — Let us prove the case p odd (the case p = 2 is similar). We
start with the case k = Fp. By theorem 10.8, the graded FFp -algebra
UH(Bn(Γ[2])) is isomorphic to U

(⊕
w I[deg(w)]

)
. Hence by theorem 9.3,

the graded PFp -algebra H(Bn(Γ[2])) is of the form U
(⊕

w I
(rw)[deg(w)]

)
,

where the rw are nonnegative integers which we have to determine. Ac-
tually, these integers are given by the weights of the H(Bn(Γ[2])). Let
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V ∈ VFp . By proposition 10.5 the morphism induced by the cohomology
operations

U(
⊕

w V [deg(w)])→ H(BnΓ(V [2]))

becomes a morphism of weighted graded Fp-algebras if we let the copy of V
indexed by w have weight tw. Hence, the weighted graded algebra structure
of H(Bn(Γ[2])) implies that rw = tw.
To get the result for all fields k it suffices to use the exact base change for

strict polynomial functors (Notice: this feature is specific to strict polyno-
mial functors!). If k is a field of characteristic p, there is an exact functor [17,
Prop 2.6]: ⊗Fpk : PFp → Pk. This base change functor commutes with ten-
sor products and sends divided powers to divided powers and Frobenius
twists to Frobenius twists. Whence the result. �

Remark 10.15. — At first sight, the result for p = 2 seems very different
from the result for p odd. However, if p = 2 and V ∈ VF2 , there is an
isomorphism of graded algebras with weights (not natural with respect
to V ):

Γ(V (r)[i]) ' Λ(V (r)[i])⊗ Γ(V (r+1)[2i]).

Indeed, we can prove it if V = F2 by direct inspection, and get the general
result by the exponential formula.

10.5. Ext-computations over a field

Combining theorem 10.14 and theorem 7.5, we obtain the following com-
putations of the Pk-graded algebras E(S,Γ) and E(S,Λ). Comparison with
earlier computations by other authors is made in section 15.3.

Theorem 10.16. — Let k be a field of odd characteristic p. Let us
denote by I(k)〈i〉 a copy of the k-th Frobenius twist functor, placed in
cohomological degree i (thus, I(k)〈i〉 = I(k)[−i]). We have an isomorphism
of Pk-graded algebras:

E(S,Λ) ' Λ
(⊕
k>0

I(k)〈pk − 1〉
)
⊗1 tΓ

(⊕
k>0

I(k+1)〈pk+1 − 2〉
)
,

where A⊗1B denotes the “signed tensor product” of two Pk-graded algebras
and tA denotes the weight twisted algebra associated to A, as defined in
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section 4.3. We also have an isomorphism of Pk-graded algebras:

E(S,Γ) '

Γ
(⊕
k>0

I(k)〈2pk − 2〉
)
⊗ Λ

( ⊕
k>0,`>0

I(k+`+1)〈2pk+`+1 − 2pk − 1〉
)

⊗ Γ
( ⊕
k>0,`>0

I(k+`+2)〈2pk+`+2 − 2pk+1 − 2〉
)
.

Proof. — Let us prove the first isomorphism, the second one is similar.
Theorem 7.5 yields an isomorphism between E(S,Λ) and tR3(HB(Γ[2])).
The homology of B(Γ[2]) is computed in theorem 10.14, and applying the
computation rules for Rα developed in section 6, we obtain
tE(S,Λ) = R3Λ(

⊕
k>0 I

(k)[2pk + 1])⊗1 R3Γ(
⊕

k>0 I
(k+1)[2pk+1 + 2]),

= tΛ(
⊕

k>0 I
(k)[−pk + 1])⊗1 Γ(

⊕
k>0 I

(k+1)[−pk+1 + 2]).

Using I(k)[−i] = I(k)〈i〉, we obtain the result. �

Theorem 10.17. — Let k be a field of characteristic p = 2. Let us
denote by I(k)〈i〉 a copy of the k-th Frobenius twist functor, placed in
cohomological degree i. We have isomorphisms of Pk-graded algebras:

E(S,Λ) ' Γ
(⊕
k>0

I(k)〈pk − 1〉
)
,

E(S,Γ) ' Γ
( ⊕
k>0,`>0

I(k+`)〈2pk+` − pk − 1〉
)
.

11. Explicit computations over the integers

In this section, we work over the ground ring k = Z. We elaborate on
Cartan’s computation of the homology of EML-spaces with integral coeffi-
cients to compute the homology of Bn(Γ[2]). Cartan made two descriptions
of the integral homology of EML spaces K(π, n): a compact description,
which is not natural with respect to π (this is [4, Exp 11, Théorème 1]),
and a description by generators and relations, which is natural with respect
to π, but quite complicated (this is [4, Exp 11, Théorème 6]). We will use
the compact description of the homology of EML spaces, and we only com-
pute the homology of BnΓ(Zm[2]) as graded algebras with weights. As a
corollary, we compute E(S,Λ)(Zm) and E(S,Γ)(Zm) as wdg-Z-algebras.
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11.1. Dual Koszul and De Rham algebras

If V is a graded Z-module, we denote by V [j] its homological suspension,
that is, V [j]i := V i−j .

Definition 11.1 (Dual Koszul algebra). — Let V be a positively graded
Z-free module concentrated in odd degrees. Then Γ(V [1])⊗Λ(V ) is a com-
mutative graded-Z-algebra. If h is a positive integer, we define a differential
dK as the composite:

Γn(V [1])⊗ Λk(V ) ∆⊗Id−−−→ Γn−1(V [1])⊗ V [1]⊗ Λk(V )
h Id−−→ Γn−1(V [1])⊗ V ⊗ Λk(V ) Id⊗m−−−−→ Γn−1(V [1])⊗ Λk+1(V ).

This makes (Γ(V [1]) ⊗ Λ(V ), dK) into a commutative differential graded
algebra which we call the “dual Koszul algebra”. We denote it by Kh(V ).

If h = 1, Kh(V ) is the graded dual of the usual Koszul algebra, see
e.g. [11, Section 4], whence the name. If V is a copy of Z in odd degree,
then Kh(V ) is nothing but an elementary complex of type (II) from [4, Exp
11]. Dual Koszul algebras satisfy an exponential property: the following
composite (where the first map is induced by the canonical inclusions into
V ⊕W ) is an isomorphism of differential graded algebras

Kh(V )⊗Kh(W )→ Kh(V ⊕W )⊗2 m−→ Kh(V ⊕W ).

Finally, we observe that when V is equipped with weights, Kh(V ) is canon-
ically made into a wdg-Z-algebra.

Assume now that V is concentrated in even degrees. We can adapt the
definition of the dual Koszul algebra by exchanging the roles of exterior
and divided powers. This yields the dual De Rham algebra Ωh(V ).

Definition 11.2 (Dual De Rham algebra). — Let V be a positively
graded Z- free module, and let h be an integer. The dual De Rham algebra
Ωh(V ) is the cdg-Z-algebra which equals Γ(V )⊗Λ(V [1]) as a commutative
graded algebra and whose differential equals the composite

Γn(V )⊗ Λk(V [1]) Id⊗∆−−−−→ Γn(V )⊗ V [1]⊗ Λk−1(V [1])
h Id−−→ Γn(V )⊗ V ⊗ Λk−1(V [1]) m⊗Id−−−−→ Γn+1(V )⊗ Λk−1(V [1]).

If h = 1, Ωh(V ) is the graded dual of the usual De Rham algebra, and if V
is a copy of Z in even degree, it is an elementary complex of type (II) from [4,
Exp 11]. There are isomorphisms of dg-Z-algebras Ωh(V ) ⊗ Ωh(W ) '
Ωh(V ⊕W ), and when V is equipped with weights, Ωh(V ) becomes a wdg-
Z-algebra.
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11.2. Cartan’s result

We fix a free Z-module V = Zm and a positive integer n. We are going
to present Cartan’s computation of the homology of EML spaces from [4,
Exp. 11, Theoreme 1]. Recall from definition 10.6 the p-admissible words
of height n attached to a prime p (here we also use definition 10.6 when
p = 2). The word σn is p-admissible of height n, and the other p-admissible
words of height n can be grouped in a unique way into pairs of the form
(σk+1γpα, σ

kφpα), where α is denotes a word and k > 0. In such a pair, the
degrees of the two words differ by one: deg(σkφpα) = deg(σk+1γpα) + 1.

Definition 11.3. — We call p-pair of height n a pair of p-admissible
words of height n of the form π = (σk+1γpα, σ

kφpα) (where α is a word,
and k > 0). The degree of the pair π is the lowest degree of the words of
the pair, that is deg(π) = deg(σk+1γpα).

Example 11.4. — If n = 3, the p-pairs of height n are the pairs

πk = (σγk+1
p σ2, φpγ

k
pσ

2), for k > 0,

and deg(πk) = 2pk+1 + 1. If n = 4 the p-pairs of height n are the pairs

π` = (σ2γ`+1
p σ2, σφpγ

`
pσ

2), for ` > 0,

πk,` = (σγk+1
p φpγ

`
pσ

2, φpγ
k
pφpγ

`
pσ

2), for k > 0, ` > 0,

and their degrees are deg(π`) = 2p`+1 +2, deg(πk,`) = 2p`+k+2 +2pk+1 +1.

Definition 11.5. — We denote by X [n]
p the cdg-Z-algebra defined by:

X [n]
p = Kp

(⊕
π

V [deg(π)]
)
⊗ Ωp

(⊕
π′

V [deg(π′)]
)
,

where the first direct sum is taken over all the p-pairs π of height n and
odd degree, and the second one is taken over all the p-pairs π′ of height n
and even degree. We also denote by X [n]

0 the cdg-k-algebra which equals
Λ(V [n]) if n is odd and Γ(V [n]) if n is even, with trivial differential.

Let us denote by pM the p-primary part of a Z-module M :

pM =
{
m ∈M ; ∃k pkm = 0

}
.

The homology of X [n]
p equals Z in degree zero, so its p-primary part

pH(X [n]
p ) is a graded subalgebra of H(X [n]

p ) without unit (it is concen-
trated in positive degrees). We make it into a unital Z-algebra p̂H(X [n]

p ) in
the canonical way:

p̂H0(X [n]
p ) = Z, p̂Hi(X [n]

p ) = pHi(X [n]
p ) for i > 0.
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In view of corollary 8.3, Cartan’s computation of the integral homology of
the EML-spaces K(Zm, n+ 2) can be formulated in the following way.

Theorem 11.6 ([4, Exp. 11, Theoreme 1]). — Let n be a positive in-
teger, let V = Zm be a free abelian group. The homology of BnΓ(V [2]) is
isomorphic as a graded algebra, to the tensor product

X
[n+2]
0 ⊗

⊗
p prime

p̂H(X [n+2]
p ).

11.3. Integral torsion of Exts

To be able to identify Ei(Sd,Λd)(V ) or Ei(Sd,Γd)(V ) explicitly as a di-
rect summand of the homology of BnΓ(V [2]), we have to describe the latter
as a graded algebra with weights. However, some interesting information
can already be extracted from theorem 11.6 without describing the weights,
in particular for the case n = 1.
Indeed, observe in example 11.4 that all the p-pairs of height 3 have odd

degrees. So for all prime p, X [3]
p is just the dual Koszul algebra

X [3]
p = Kp

(⊕
k>0

V [2pk+1 + 1]
)
.

Lemma 11.7. — Hi(X [3]
p ) is a Fp-vector space if i > 0 and equals Z if

i = 0.

Proof. — IfW is a graded free Z-module in positive odd degrees, the dual
Koszul algebraK1(W ) satisfies Hi(K1(W )) = Z if i = 0 and zero otherwise
(use the exponential formula and the Künneth morphism to reduce to the
case when W has rank one, then the result is easy). Since the differential ∂
of Kp(W ) is p times the differential δ of K1(W ), we have H0(Kp(W )) = Z,
and if i > 0:

Hi(Kp(W )) = Ker ∂/ Im ∂ = Ker δ/p(Im δ) = Im δ/p(Im δ) ' Im δ ⊗Z Fp.

This proves the result. �

Lemma 11.7 implies that the p-primary part of the homology ofBΓ(V [2]),
hence of E(S,Λ)(V ), is a Fp-vector space. This information is precious be-
cause it implies that E(S,Λ)(V ) can be retrieved from the analogous ex-
tensions over Fp by the universal coefficient theorem.

Theorem 11.8. — Let V = Zm. Then E0(Sd,Λd)(V ) ' Λd(V ), and
for i positive, the p-primary part of Ei(Sd,Λd)(V ) is a finite dimensional
Fp-vector space. Moreover let P (t), resp. Q(t), be the Poincaré series of
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the graded Fp-vector space E(Sd,Λd)(V ) ⊗Z Fp, resp. E(SdFp ,Λ
d
Fp)(V/pV ).

Then we have (1 + t)P (t) = tQ(t) + P (0).

Proof. — The computation of E0(Sd,Λd)(V ) was made in lemma 4.6.
It is well known that Ei(Sd,Λd)(V ) is a finite abelian group for i posi-
tive. This is actually true for extensions between arbitrary strict polyno-
mial functors F,G with finitely generated values, but in our case it can
be directly proved as follows. First, Ei(Sd,Λd)(V ) is a finitely generated
abelian group. Indeed, it is the d − i-th homology group of the complex
H(Sd, I•,d)(V ) from section 7.2, which is a complex of free finitely gener-
ated Z-modules. Then by base change [17, prop 2.6] and the universal co-
efficient theorem, Ei(Sd,Λd)(V )⊗ZQ is isomorphic to Ei(SdQ,ΛdQ)(V ⊗ZQ)
which is zero because the category PQ is semi-simple. Thus Ei(Sd,Λd)(V )
is a finite abelian group. Now lemma 11.7 and theorem 11.6 show that the
p-primary part of the homology of BΓ(V [2]), hence of Ei(Sd,Λd)(V ), is a
Fp-vector space. Finally, by base change [17, prop 2.6] and the universal
coefficient theorem, there is for all i an isomorphism of Fp-vector spaces:

Ei(Sd,Λd)(V )⊗Z Fp ⊕ Ei+1(Sd,Λd)(V )⊗Z Fp ' Ei(SdFp ,Λ
d
Fp)(V/pV ).

The assertion on the Poincaré series follows. �

The Poincaré series Q(t) are easy to determine from theorems 10.16
and 10.17, and they were first determined in [1] for V = Z. Since we know
P (0) = dimFp(Γd(V ) ⊗ Fp), the Poincaré series P (t) are easily computed
from the equation (1 + t)P (t) = tQ(t) +P (0) of theorem 11.8. To illustrate
this, we give the values of ExtiPZ

(Sn,Λn) in low degrees (for i = 1 they
were first computed in [1, Section 4]).

Example 11.9. — We have the following Ext-computations:

Ext1
PZ

(Sn,Λn) = Z/2Z if n > 2, and zero if n 6 1,

Ext2
PZ

(Sn,Λn) = Z/3Z if n = 3, 4 and zero otherwise,

Ext3
PZ

(Sn,Λn) =


0 if n 6 3,
Z/2Z⊕ Z/3Z if n = 6, 7,
Z/2Z otherwise.

In the case n = 2, X [4]
p is a tensor product of a dual Koszul algebra

and a dual De Rham algebra. The latter brings pr-torsion for all values of
r > 0 in the homology of X [4]

p . So in contrast to theorem 11.8 we have the
following result.
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Proposition 11.10. — Let V = Zm. For all prime p and all r > 0,
there exists positive integers i, d such that the abelian group Ei(Sd,Γd)(V )
has an element of pr-torsion.

11.4. Computation of weights

The PZ-dg-algebra B
n(Γ[2]) becomes a wdg-Z-algebra after evaluation

on V = Zm, so the homology of BnΓ(V [2]) is equipped with weights. We
are now going to supplement Cartan’s result by describing these weights.

Definition 11.11. — Let π be a p-pair. The weight of π is the integer
w(π) defined by w(π) = ptπ , where tπ is the number of letters which equal
φp or γp in one of the two words of π (compare with definition 10.13).

Example 11.12. — We keep the notations of example 11.4. For the p-
pairs of height n = 3, we have w(πk) = pk+1. For the p-pairs of height 4
we have: w(π`) = p`+1 and w(πk,`) = pk+`+2.

Theorem 11.13. — Let n be a nonnegative integer, let V = Zm be a
free abelian group. There is an isomorphism of graded algebras with weights

X
[n+2]
0 ⊗

⊗
p prime

p̂H(X [n+2]
p ) ' H

(
B
n(Γ(V [2]))

)
.

On the left hand side, X [n+2]
p denotes the wdg-Z-algebra defined by:

X [n+2]
p = Kp

(⊕
π

Vw(π)[deg(π)]
)
⊗ Ωp

(⊕
π′

Vw(π′)[deg(π′)]
)
,

where Vk[i] denotes a copy of V having weight k and degree i, and where
the first direct sum is taken over a the p-pairs π of height n + 2 and odd
degree and the second direct sum is taken over the p-pairs π′ of height
n + 2 and even degree. Moreover, X [n+2]

0 equals Λ(V1[n + 2]) if n is odd,
and Γ(V1[n+ 2]) if n is even.

Before we prove theorem 11.13, we recall the universal property of dual
Koszul and De Rham algebras. If W is a graded Z-module we denote by
Wodd, resp. Weven, its summand of odd, resp. even, degree.

Lemma 11.14 (see [4, Exp. 1, Section 2]). — Let W be a positively
graded Z-free module, let h be a integer, and let Ch(W ) be the complex
W [1] h Id−−→W . This complex is a direct summand ofKh(Wodd)⊗Ωh(Weven).
Assume that A is a cdg-Z-algebra, equipped with a system of divided pow-
ers, and free as a Z-module. For all morphism of complexes f : Ch(W )→ A
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there exists a unique morphism of cdg-Z-algebras f such that the following
diagram commutes:

Ch(W )
f //

� _

��

A

Kh(Wodd)⊗ Ωh(Weven)
f

55jjjjjjjjj

If W is equipped with weights and A is a cwdg-Z-algebra, then f preserves
the weights if and only if f does.

Proof. — The morphism of algebras f is obtained by the universal prop-
erty of the graded algebra with divided powers Kh(Wodd) ⊗ Ωh(Weven) =
U(W [1] ⊕W ) (see theorem 10.2). In particular f preserves the weights if
and only if f does. So one has only to check that f commutes with the
differentials. Using that d(γk(x)) = dx ·γk−1x in Kh(Wodd)⊗Ωh(Weven) =
U(W [1]⊕W ) and A, one reduces the proof that f commutes with differen-
tials to the proof that the restriction of f to the generators of Kh(Wodd)⊗
Ωh(Weven) = U(W [1] ⊕W ) commutes with the differential. But this re-
striction is nothing but f . Whence the result. �

Proof of theorem 11.13. — Denote by H(V, n + 2,k) the singular ho-
mology of the EML space K(V, n + 2) with coefficients in k. Let A be a
differential graded Z-algebra such that

(i) A is graded commutative, Z-free, equipped with divided powers,
(ii) The homology of A is isomorphic to H(V, n+ 2,Z),
(iii) For all prime p, the homology of the Fp-differential graded algebra

A⊗Z Fp is isomorphic to H(V, n+ 2,Fp).
To prove theorem 11.6, Cartan builds morphisms of dg-algebras

fp : X [n+2]
p → A,

(for p zero or prime) which induce after taking homology the isomorphism

X
[n+2]
0 ⊗

⊗
p prime p̂H(X [n+2]

p ) ' H(V, n+ 2,Z).

In Cartan’s proof, the algebra A is Bn+2(ZV ), but any other algebra A
satisfying conditions (i), (ii) and (iii) works as well in his argument, for
example we can take A = B

n(Γ(V [2])).
So, to prove theorem 11.13, it suffices to prove that the morphisms fp

preserve weights when A = B
nΓ(V [2]) and when the weights on X [n+2]

p are
as indicated in the statement of theorem 11.13.
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Case of fp, p prime. By the universal property of Dual Koszul and
De Rham algebras from lemma 11.14, the construction of fp (preserving
weights) reduces to the construction for each p-pair π of a morphism of
complexes (preserving weights)

fp : Cp(Vw(π)[deg(π)])→ A

Fix a pair π = (σk+1γpα, σ
kφpα) and a basis (vi) of V [deg(π)]. Denote by

(wi) the same basis, considered as a basis of V [deg(π) + 1]. So the complex
Cp(Vw(π)[deg(π)]) equals

V [deg(π) + 1] d−→ V [deg(π)],

with d(wi) = vi. Let vi be the reduction modulo p of vi, considered as an
element of V ⊗ZFp[deg(σkφpα)] which is the direct summandH(V, n+2,Fp)
indexed by the p-admissible word σkφpα, cf. theorem 10.14. This summand
is also well defined for p = 2 by remark 10.15. The morphism of complexes
fp is defined by Cartan as follows.
(a) The canonical map A → A ⊗Z Fp is surjective so we can find an

element fp(wi) ∈ A whose reduction modulo p is a cycle representing
the homology class vi ∈ H(V, n+ 2,Fp).

(b) The reduction mod p of fp(wi) is a cycle of A⊗Z Fp, so d(fp(wi)) is
divisible by p. We define fp(vi) by the equality pfp(vi) = d(fp(wi)).

Take A = B
nΓ(V [2]). The canonical map A→ A⊗Z Fp preserves weights,

so the weight of fp(wi) is the same as the weight of vi, which equals w(π)
by theorem 10.14. Thus, the map fp preserves weights.

Case of f0. The morphism f0 : X [n+2]
0 → B

n(Γ(V [2])) is induced by
the morphism V1[n + 2] =−→ B

n(Γ(V [2]))n+2 and the universal property of
X

[n+2]
0 = U(V1[n+ 2]). So f0 preserves weights (it is actually a morphism

of PZ-dg-algebras). �

Theorem 11.13 yields an algorithm to compute the homology of
B
nΓ(V [2]). Indeed, the homology of the dual Koszul and De Rham al-

gebras on a single generator can be computed by direct inspection.
(i) The homology of Kh(Z[2i− 1]) is Z in degree 0 (and weight zero),

Z/hZ in degrees d2i−1 (and weight d) for d > 0, and zero elsewhere.
(ii) The homology of Ωh(Z[2i]) is Z in degree 0 (and weight zero),

Z/dhZ in degrees d2i (and weight d) for d > 0, and zero elsewhere.
With the help of the exponential isomorphisms

Kh(V ⊕W ) ' Kh(V )⊗Kh(W ) and Ωh(V ⊕W ) ' Ωh(V )⊗ Ωh(W ),
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and iterative uses of the Künneth formula, one recovers the homology of
the wdg-Z-algebras X [n+2]

p . Theses algebras have an infinite number of
generators, but only a (relatively small) finite number of generators play a
role in the computation of a summand of the homology with given weight
or degree. Let us give the computation of the homogeneous part of weight
4 of the homology of BnΓ(Z[2]) for n = 1 and n = 2.

Example 11.15. — The homogeneous part of weight 4 of the homology
of BΓ(Z[2]) is given by the following table (it is zero outside the table).

degree 9 10 11
homology Z/2Z Z/3Z Z/2Z

The homogeneous part of weight 4 of the homology of B2Γ(Z[2]) is given
by the following table (it is zero outside the table).

degree 10 11 12 13 14 15 16
homology Z/2Z 0 Z/12Z Z/2Z Z/2Z 0 Z

11.5. The algebra of Koszul kernels

When n = 1, theorem 11.13 has a nicer formulation in terms of the
algebra of Koszul kernels.
If W is a graded Fp-vector space concentrated in positive odd degrees,

we denote by KFp(W ) the dual Koszul algebra over W , that is, the graded
Fp-algebra ΓFp(W [1])⊗Fp ΛFp(W ) (the index “Fp” is put here to emphasize
that we work in the realm of Fp-vector spaces, in particular ΓFp(W [1]) and
ΛFp(W ) equal Fp in degree zero) equipped with the Koszul differential,
defined as the composite

ΓnFp(W [1])⊗Fp ΛkFp(W ) ∆⊗Id−−−→ Γn−1
Fp (W [1])⊗Fp W [1]⊗Fp ΛkFp(W )

Id−→ Γn−1
Fp (W [1])⊗Fp W ⊗Fp ΛkFp(W ) Id⊗m−−−−→ Γn−1

Fp (W [1])⊗Fp Λk+1
Fp (W ).

The dual Koszul algebra is a cdg-Fp-algebra, it has weights ifW is equipped
with weights, and it is a PFp -graded algebra if W is a graded strict poly-
nomial functor.

Definition 11.16. — Let W be a graded Fp-vector space concentrated
in positive odd degrees. The algebra of Koszul kernels KFp(W ) is the com-
mutative graded Z-algebra defined by: KFp(W )0 = Z and in positive de-
grees KFp(W ) equals the cycles of positive degree of the dual Koszul algebra
KFp(W ).
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Lemma 11.17. — Let V be a graded Z-module with weights, concen-
trated in odd degrees and Z-free of finite rank in each degree. Put the
weights on V/pV such that the epimorphism V � V/pV preserves weights.
There is an isomorphism of graded Z-algebras with weights:

H(Kp(V )) ' KFp(V/pV ).

Proof. — We have already proved in lemma 11.7 that H0(Kp(V )) '
Z and that for positive i, Hi(Kp(V )) is isomorphic to the image of the
differential of K1(V ) tensored by Fp. But K1(V ) ⊗ Fp ' KFp(V/pV ) so
the latter equals Im(d) where d is the differential of KFp(V/pV ). Finally,
since KFp(V/pV ) is exact in positive degrees (use the exponential formula
and the Künneth isomorphism to reduce to the case when V has rank one),
Im(d) = KFp(V/pV ). �

Using lemma 11.17, the case n = 1 of theorem 11.13 can be reformulated
in the following way.

Theorem 11.18. — Let V [2] be a free Z-module of finite rank concen-
trated in degree 2 and weight one. The homology of B(Γ(V [2])) is isomor-
phic to the graded algebra with weights (where (V/pV )(r)[k] denotes a copy
of V with degree k and weight pr):

Λ(V [3])⊗
⊗
p prime

KFp

(⊕
k>0

(V/pV )(k+1)[2pk+1 + 1]
)
.

Observe that the graded algebra with weights appearing in theorem 11.18
is actually a graded PZ-algebra. We do not claim in theorem 11.18 that the
isomorphism is an isomorphism of graded PZ-algebras, but however we
conjecture that this is the case, at least for the p-primary part when p is
odd. The proof of this (and further developments) is a work in progress
with L. Breen and R. Mikhailov [2].

11.6. Ext-computations over the integers

By theorem 7.5 the graded algebras with weights E(S,Λ)(Zm) and
E(S,Γ)(Zm) are simply obtained from B

n(Γ(Zm[2])) by regrading. For in-
stance, we obtain the following Ext-computation from example 11.15.

Example 11.19. — The groups ExtiPZ
(S4,Λ4) and ExtiPZ

(S4,Γ4) are
given by the following tables (they are zero outside the table).

degree i 0 1 2 3
ExtiPZ

(S4,Λ4) 0 Z/2Z Z/3Z Z/2Z
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degree i 0 1 2 3 4 5 6
ExtiPZ

(S4,Γ4) Z 0 Z/2Z Z/2Z Z/12Z 0 Z/2Z

We can also give general formulas by regrading theorems 11.13 and 11.18.
If W is a graded Fp-module with weights concentrated in even degrees, we
let K̃Fp(W ) be the wg-Z-algebra which equals Z in degree zero and which
equals the subalgebra of cycles of the wdg-Z-algebra tΓFp(W [1])⊗1ΛFp(W )
(equipped with the Koszul differential) in positive degrees. So K̃Fp(W ) is
equal to the algebra of Koszul kernels KFp(W ) if p = 2, and it differs from
KFp(W ) by signs in the multiplication if p is odd. Moreover:

K̃Fp(R3V ) = R3(KFp(V ))

when V is a graded Fp-module with weights concentrated in odd degrees
and odd weights, or when p = 2. Thus, theorem 11.18 and theorem 7.5
yield the following computation of E(S,Λ)(Zm).

Theorem 11.20. — Let Zm be a free abelian group. There is an iso-
morphism of graded Z-algebras with weights

E(S,Λ)(Zm) ' Λ(Zm〈0〉)⊗1
⊗
p prime

1
K̃Fp

(⊕
k>0

(Zm/pZm)(k+1)〈pk+1 − 1〉
)
.

On the right hand side, Zm〈0〉 is a copy of Zm having degree zero and weight
1, and (Zm/pZm)(k)〈i〉 denotes a copy of Zm/pZm having cohomological
degree i and weight pk.

Using theorems 11.18 and theorem 7.5, we also obtain a computation of
the graded Z-algebras with weights E(S,Γ)(Zm).

Theorem 11.21. — Let Zm be a free abelian group. There is an iso-
morphism of graded Z-algebras with weights

E(S,Γ)(Zm) ' Γ(Zm〈0〉)⊗
⊗
p prime

p̂H(X̃p).

On the right hand side, X̃p is the wdg-Z-algebra defined as the tensor
product:

Kp

(⊕
k,`>0

Zmpk+`+2〈2pk+`+2 − 2pk+1 − 1〉
)
⊗Ωp

(⊕
`>0

Zmp`+1〈2pk+1 − 2〉
)
,

where Zmk〈i〉 denotes a copy of Zm having weight k and cohomological
degree i (or equivalently homological degree −i).
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Part IV. Frobenius twists

In this part, k is a field of prime characteristic p. We compute the Pk-
graded algebras E(X(r), Y (s)), when X and Y are classical exponential
functors and r, s are nonnegative integers. Our method offers a unified
treatment of all the cases. We proceed in several steps.
In section 12, we show that the Pk-graded algebras of the form E(X(t), Y )

are equal, up to a regrading, to the algebras E(X,Y )(t).
In section 13, we use the twisting spectral sequence from [19]. In our case,

it is proved in [19] that the spectral sequence collapses at the second page.
As a consequence, we obtain that the Pk-graded algebras E(X(r), Y (s)) can
be easily computed (up to a filtration) from E(X(r−s), Y ).
To finish the computation, we need the filtrations on E(X(r), Y (s)) to be

trivial. This is the purpose of section 14, which is of independent interest.
We prove that for some filtered Pk-graded algebras A with prescribed GrA,
the filtration must split. The results are stated in section 15.

12. Décalages

Let A = {A0,d}d>0 be a Pk-algebra. Recall the external product:

Ei(F,A0,d)⊗ Ej(G,A0,e)→ Ei+j(F ⊗G,A0,d+e)

induced by tensor products and the multiplication of A. The following
décalage formula was first obtained, by other means, in [5, Prop 2.6].

Proposition 12.1. — Let k be a field of prime characteristic p, let
F ∈ Pk, and let t be a nonnegative integer. For all integer i, there are
isomorphisms of strict polynomial functors(6) , natural in F :

Ei(F, Sd)(t) ' Ei(F (t), Sdp
t

),

Ei(F,Λd)(t) ' Ei+(pt−1)d(F (t),Λdp
t

),

Ei(F,Γd)(t) ' Ei+2(pt−1)d(F (t),Γdp
t

).

Moreover, if Y = S,Λ or Γ, the external product

E∗(F, Y d)(t) ⊗ E∗(G, Y e)(t) → E∗(F ⊗G, Y d+e)(t)

(6) In the statement, we take the convention that Ei(F, G) = 0 for i < 0. To emphasize
the analogy between the three cases, we have also written Ei(F, Sd) although these
extension groups actually reduce to H(F, Sd) since symmetric powers are injective.
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identifies through the isomorphism above with the external product:

E∗(F (t), Y dp
t

)⊗ E∗(G(t), Y ep
t

)→ E∗(F (t) ⊗G(t), Y dp
t+ept).

Proof. — We will prove that the isomorphisms actually hold at the level
of chain complexes. Since there are no extension groups between homoge-
neous functors of different weights, we can assume that F is homogeneous
of weight d. Let us recall from [19, Lemmas 2.2 and 2.3] an elementary
computation in Pk . If µ = (µ1, . . . , µn) is a tuple of positive integers, we
denote by Sµ the tensor product Sµ1 ⊗ · · · ⊗ Sµn , and by αµ the tuple
αµ := (αµ1, . . . , αµn). For all F ∈ Pk, there are isomorphisms (the first
one is induced by precomposition by I(t), the second one by the canonical
inclusion Sµ (t) ↪→ Sp

tµ):
(i) H(F, Sµ)(t) ' H(F (t), Sµ(t)),
(ii) H(F (t), Sµ(t)) ' H(F (t), Sp

tµ),
(iii) H(F (t), Sλ) ' 0 if λ is not of the form ptµ.
Since E∗(F, Sd)(t) = H(F, Sd)(t), the composition of the isomorphisms

(i) and (ii) provides the required isomorphism for the case of Sd. The
compatibility with external products is straightforward.
Now we turn to the case of E∗(F,Λd)(t). We use bar constructions of

symmetric algebras in the same fashion as in the proof of proposition 7.1.
There a quasi-isomorphism of dg-Pk-algebras Λ[1] ↪→ BS, which becomes
after regrading a quasi-isomorphism Λ ↪→ tR1(BS). The homogeneous part
of weight d of tR1(BS) is a coresolution of Λd by symmetric powers, which
we denote by tR1Id. So Ei(F (t),Λdpt) is the (−i)-th homology group of the
complex H(F (t), tR1Idpt). We consider the morphism of complexes defined
as the composition

(iv) H(F, tRptId)(t) ' H(F (t), (tRptId)(t))

= H(F (t), tR1(I(t)
d ))→ H(F (t), tR1Idpt)

where the first isomorphism is the isomorphism (i), the equality comes
from the equality R1(BS(t)) = (Rpt(BS))(t), and the last morphism is
induced by the morphism of graded Pk-algebras S(t) ↪→ S (which maps
Sd(t) into Sdpt), which induces a morphism BS(t) ↪→ BS, hence a morphism
tR1(I(t)

d )→ tR1Idpt . We claim that the last map in the composition (iv) is
an isomorphism of complexes. Indeed, the objects of the complex tR1Idpt

are symmetric tensors Sλ. If λ = ptµ, then there is a summand Sµ (t) of
(tR−1Id)(t) such that the restriction of the map tR−1(I(t)

d ) → tR−1Idpt

to Sµ (t) is the canonical inclusion Sµ (t) ↪→ Sp
tµ. This canonical inclusion

induces an isomorphism after applying H(F (t),−), by (v). If λ is not of the
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form ptµ, then H(F (t), Sλ) ' 0 by (iii). Hence the composition (iv) is an
isomorphism of complexes. Taking the (−i)-th homology group, we obtain
an isomorphism

Ei(F (t),Λdp
t

) ' Ei−d(pt−1)(F,Λd)(t).

It remains to check the compatibility with external products. This is a
straightforward check at the level of cochain complexes, similar to the iden-
tification of the convolution product in the proof proposition 7.1. The case
of E∗(F,Γd) is similar. �

If C is a Pk-coalgebra, and Y is a classical exponential functor, the convo-
lution product of E(C, Y (t)) is obtained by combining the external product
and the map induced by the comultiplication of C. So proposition 12.1 im-
plies the following result, which we formulate using the regrading functor
Rα from section 6.

Corollary 12.2. — Let C be a Pk-coalgebra and let Y be a classi-
cal exponential functor. For all t > 0, there is an isomorphism Pk-graded
algebras: (

Rα(Y )E(C, Y )
)(t) ' E(C(t), Y ),

with α(S) = 0, α(Λ) = pt − 1 and α(Γ) = 2(pt − 1).

For the convenience of the reader, we write out explicitly two cases of
application of corollary 12.2.

Example 12.3.
(1) The divided powers Γd are projective strict polynomial functors, and

the Yoneda lemma yields an isomorphism of Pk-algebras:

E(Γ,Λ) = H(Γ,Λ) ' Λ.

Let Λ〈i〉(t) denote the Pk-graded algebra with Λd (t) in cohomological degree
i and weight dpt (hence Λ〈i〉(t) = Λ[−i](t)). Corollary 12.2 implies:

E(Γ(t),Λ) ' Λ〈pt − 1〉(t).

(2) Assume that p = 2. Let I(k)〈i〉 denote a copy of the k-th Frobenius
twist functor, placed in cohomological degree i (hence I(k)〈i〉 = I(k)[−i]).
We computed E(S,Λ) in theorem 10.17, so corollary 12.2 implies:

E(S(t),Λ) ' Γ
(⊕

k>0 I
(k+t)〈pk+t − 1〉).
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13. The twisting spectral sequence and Troesch complexes

Let r, s be nonnegative integers, and assume that t := r−s is nonnegative.
In this section we explain how to recover, up to a filtration, the Pk-graded
algebra E(X(r), Y (s)) from the Pk-graded algebra E(X(t), Y ). This is a sim-
ple application of the results proved in [19], but for the reader’s convenience
we recall here the results we need for our computation.

13.1. Parameterization by graded vector spaces

Let V be a finite dimensional graded vector space. The parameterized
functor FV : W 7→ F (V ⊗ W ) actually carries a grading, defined in the
following way. Let the multiplicative group Gm act rationally on a homo-
geneous vector v ∈ V of degree i by the formula λ · v := λiv. Since F is a
strict polynomial functor, this induces a rational action of Gm on FV (W )
for all W ∈ Vk. Thus, FV splits as a direct sum FV =

⊕
i∈Z(FV )i, where

(FV )i(W ) is the subspace of weight i of FV (W ) under the action of Gm.
Thus, parameterization by a graded vector space V defines a weight-

preserving functor (P∗k is the category of graded strict polynomial functors):

Pk → P∗k
F 7→ FV

.

Example 13.1. — If F is a symmetric power, an exterior power, a di-
vided power or a tensor product of these, the notion of degree defined on
FV (W ) coincides with the usual definition. For example, if V has a homo-
geneous basis formed by e−1 of degree −1 and e4 of degree 4, and if wi
denote elements of W , the element (e−1 ⊗w1)(e4 ⊗w2)⊗ (e−1 ⊗w3) is an
element of degree −1 + 4− 1 = 2 of (S2 ⊗ S1)V (W ).

The following example will also be important for our computations.

Example 13.2. — If F = I(r) and V = ⊕Vi then (I(r))V = ⊕V (r)
i ⊗I(r),

where the summand V (r)
i ⊗I(r) is homogeneous of degree pri. In particular,

the functors (IV )(r) and (I(r))V do not bear the same gradings, although
they are isomorphic in an ungraded way.

For our purposes, we need to define parameterization of Pk-graded al-
gebras by graded vector spaces. Let A be a Pk-graded algebra and denote
by Ai,d the homogeneous part of A of degree i and weight d. The parame-
terized functor (Ai,d)V has a weight and a bigrading. To be more specific,
the first partial degree is the degree i coming from the grading of A, and
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the second partial degree is induced by the grading of V . To get rid of
bidegrees, we define the degree on (Ai,d)V as the total degree associated
to the bidegree. In this way, parameterization by a graded vector space V
defines a functor:

{Pk-g-alg} → {Pk-g-alg}
A 7→ AV

.

Example 13.3. — Let V be a graded vector space with homogeneous
basis (e2, e4) with ei of degree i. Then S[16]V = S[18]⊗ S[20].

13.2. The twisting spectral sequence

Let us denote by Es the graded vector space Ext∗Pk
(I(s), I(s)). It is one

dimensional in cohomological degrees 2i, for 0 6 i < ps and zero everywhere
else, see e.g. [12, Thm 4.5] or [19, Cor 4.7]. If G ∈ Pk, the parameterized
functor GEs inherits from Es a cohomological grading, as explained in
section 13.1. We denote by (GEs)j its homogeneous part of cohomological(7)

degree j.
Recall from [19, Thm 7.1] that for strict polynomial functors F,G with

finite dimensional values and for s > 0, there is a “twisting spectral se-
quence”, natural with respect to F and G:

Ei,j2 (F,G, s) := ExtiPk
(F, (GEs)j) =⇒ Exti+jPk

(F (s), G(s)).

Let us put the parameterized strict polynomial functor GV (s) instead of G
in the spectral sequence above. Since we have

(GV (s))(s) = (G(s))V and (GV (s))Es = GV (s)⊗Es ,

the spectral sequence now takes the form:

Ei,j2 (F,GV (s) , s) = (Ei(F,G)Es)(s) j =⇒ Ei+j(F (s), G(s)),

where for all i > 0, (Ei(F,G)Es)(s) j denotes the homogeneous part of coho-
mological degree j of the graded strict polynomial functor (Ei(F,G)Es)(s).
If G is a symmetric power, an exterior power, a divided power or a tensor

product of these, it is proved in [19, Thm 8.11] that the spectral sequence
collapses at the second page.
Finally, it is proved in [19, Thm 7.1] that the twisting spectral se-

quence is compatible with tensor products and natural with respect to F
and G. Thus, if X and Y are classical exponential functors and if t > 0,

(7)As usual, we can convert cohomological degrees into homological degrees by the
formula M i = M−i.
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we can retrieve (up to a filtration) the convolution product of the abut-
ment E(X(s+t), Y (s)) from the convolution product of the second page
(E(X(t), Y )Es)(s). The following statement sums up our discussion.

Theorem 13.4. — Let k be a field of positive characteristic, let X,Y be
classical exponential functors, and let t and s be nonnegative integers. Then
E(X(t+s), Y (s)) is a filtered Pk-graded algebra and there is an isomorphism
of Pk-graded algebras:

(E(X(t), Y )Es)(s) ' Gr
(
E(X(t+s), Y (s))

)
.

The algebra appearing on the left hand side of the isomorphism of the-
orem 13.4 is easy to compute with the help of corollary 12.2.

Example 13.5.
(1) Let I(k)〈i〉 denote a copy of the k-th Frobenius twist, with cohomo-

logical degree i (hence I(k)〈i〉 = I(k)[−i]). There is, up to a filtration, an
isomorphism of Pk-graded algebras:

E(Γ(t+s),Λ(s)) ' Λ
( ⊕

06i<ps
I(t+s)〈(2i+ 1)pt − 1〉

)
.

(2) Assume that p = 2. There is, up to a filtration, an isomorphism of
Pk-graded algebras:

E(S(t+s),Λ(s)) ' Γ
( ⊕

06i<ps

⊕
k>0

I(k+t+s)〈(2i+ 1)pk+t − 1〉
)
.

14. Splitting filtrations

This section is of independent interest: we prove general splitting results
for filtrations of Pk-graded algebras. We will use these results in section 15
to prove that the filtrations appearing in theorem 13.4 split.

14.1. General facts on filtrations

We begin with elementary observations about filtered functors.

Lemma 14.1. — Let k be a field and let F be a filtered strict polynomial
functor over k with finite dimensional values.

(i) The filtration of F has finite length.
(ii) If Ext1

Pk
(GrF,GrF ) = 0, there is an isomorphism F ' GrF .
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Proof. — To prove (i), observe that a filtration of F is equivalent to
a filtration of the S(kd, d)-module F (kd) where d is the strict polyno-
mial degree of F . Hence the filtration is finite for dimension reasons. Let
us prove (ii). Let F1 ⊂ F2 ⊂ · · · ⊂ Fn = F be the filtration of F . If
Ext1

Pk
(GrF,GrF ) equals zero, then Ext1

Pk
(F1, F2/F1) equals zero. Hence

the extension F1 ↪→ F2 � F2/F1 splits, that is F2 ' F1 ⊕ F2/F1. In this
way we build inductively an isomorphism F ' GrF . �

Without further indication, filtrations of Pk-graded algebras will always
mean bounded filtrations. That is, on each homogeneous component Ai,d of
the Pk-graded algebra A, the filtration has finite length. For example, filtra-
tions of exponential functors are always bounded. Indeed, we assume in our
definition of an exponential functor that the homogeneous components Ei,d
take finite dimensional values, so the finiteness follows from lemma 14.1.
Also, filtered Pk-graded algebras appearing as abutments of first quadrant
spectral sequences like the twisting spectral sequence from section 13 have
bounded filtrations. In our study of filtered Pk-graded algebras, we shall
use (1, ε)-commutativity defined in section 4.2. The following lemma is an
easy check.

Lemma 14.2. — Let A be a filtered Pk-graded algebra. If A is (1, ε)-
commutative, so is GrA.

Finally, we observe that the exponential property behaves well with fil-
trations of algebras.

Lemma 14.3. — Let k be a field and let A be a filtered Pk-graded
algebra. If GrA is a graded exponential functor, then so is A.

Proof. — Consider A(V ) ⊗ A(W ) as a weighted graded k-module with
the tensor product filtration

F i
(
A(V )⊗A(W )

)
=
∑
k+`=i

F kA(V )⊗ F `A(W ).

The multiplication induces a map of weighted graded k-modules A(V ) ⊗
A(W ) m−→ A(V ⊕ W ) compatible with the filtrations. Since GrA is ex-
ponential, the associated graded map Grm is an isomorphism on each
homogeneous part of degree i and weight k. The filtrations of the homoge-
neous part of degree i and weight d has finite length. So by iterated uses
of the five lemma, the map m : (A(V ) ⊗ A(W ))i,k → A(V ⊕W )i,k is also
an isomorphism. Thus A is exponential. �
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14.2. Splitting results

14.2.1. The odd characteristic case.

Lemma 14.4. — Let k be a field of odd characteristic. Let m,n be
positive integers, let λ and α be m-tuples of nonnegative integers and let µ
and β be n-tuples of nonnegative integers. Let G be a direct sum of functors
of the form

(⊗m
i=1 S

λi (αi)
)
⊗
(⊗n

i=1 Λµi (βi)
)
. Then Ext1

Pk
(G,G) = 0.

Proof. — By iterated uses of lemma 5.7 (or use [11, Cor 1.8]), it suffices
to check that Ext1(X,Y ) = 0 if X and Y are of the form S` (r) or Λm (s).

We first check that it is true if the functors are not twisted: Ext1(Sd, Sd) =
Ext1(Λd, Sd) = 0 by injectivity of Sd, Ext1(Λd,Λd) = 0 by remark 7.6, and
Ext1(Sd,Λd) = 0 by theorem 10.16. By proposition 12.1, Ext1 also vanish
if one of the two functors X,Y is twisted (indeed, the Ext-degree is shifted
by an even integer since p is odd). Finally theorem 13.4 shows the vanish-
ing of Ext1(X,Y ) in the general case (indeed, if A is a negatively graded
Pk-algebra which is zero in degree −1, then so is AEs). �

Proposition 14.5 (Splitting result I). — Let k be a field of odd char-
acteristic, and let A be a filtered Pk-graded algebra. Assume that A is
graded commutative and that GrA is an exponential functor of one of the
following forms:

(i) S(F )⊗ Λ(G),
(ii) Γ(F )⊗ Λ(G),

where F and G are graded strict polynomial functors which are additive.
Then there is an isomorphism of Pk-graded algebras A ' GrA.

Proof. — The proof relies essentially on lemma 14.4 and the use of uni-
versal properties of GrA. We prove case (ii), which is slightly more difficult.

Step 1: Splitting without products. For all i, d, the extension group
Ext1

Pk
(GrAi,d,GrAi,d) equals Ext1

Pk
(GrA]i,d,GrA]i,d) by lemma 2.3, which

equals zero by lemma 14.4. So we get an isomorphism of graded strict
polynomial functors A ' GrA, whence a surjective map: φ : A � F ⊕ G.
There is an extra grading on GrA, namely the filtration degree (that is
GrkA is the homogeneous part of GrA of filtration degree k). If we define
a filtration on GrA (hence on F ⊕ G) by Fk GrA =

⊕
i6k GriA, then φ

preserves the filtrations, and Grφ equals the canonical surjection GrA �
F ⊕G.
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Step 2: Coalgebra structures and universal property. Since GrA
is a graded exponential functor, A is also a graded exponential functor
by lemma 14.3. In particular, A also has a coalgebra structure. Since the
filtration of A is natural and compatible with products, A is a filtered
coalgebra, and Gr(A) = Γ(F )⊗ Λ(G) as a coalgebra.

Now GrA is a graded commutative algebra. Hence Γ(F ) and Λ(G) are
graded commutative. Hence F (resp. G) is concentrated in even (resp. odd)
degrees. Thus, Γ(F ) ⊗ Λ(G) is the universal cofree graded commutative
coalgebra on F ⊕G. Thus, by the universal property of the cofree algebra
(see e.g. [14, Chap. 1]) φ induces a map ψ : A→ Γ(F )⊗ Λ(G).

Step 3: Conclusion. Let us consider the trivial filtration on Γ(F ) ⊗
Λ(G) induced by the filtration Fk(F ⊗ G) of F ⊗ G from Step 1. Then ψ
preserves the filtration and by construction Grψ equals the identity map
GrA = Γ(F ) ⊗ Λ(G). In particular Grψ is an isomorphism. So ψ is an
isomorphism of coalgebras. Hence by lemma 5.4, ψ is an isomorphism of
algebras. �

We also prove splitting results for (1, 1)-commutative algebras. Recall
the signed tensor product ⊗1 defined in section 4.3.

Proposition 14.6 (Splitting result II). — Let k be a field of odd char-
acteristic, and let A be a (1, 1)-commutative filtered Pk-graded algebra
over k. Assume that GrA is an exponential functor of one of the following
forms

(i) S(F )⊗1 Λ(G), (ii) tS(F )⊗1 Λ(G), (iii) S(F )⊗1 tΛ(G),

(vi) Γ(F )⊗1 Λ(G), (v) tΓ(F )⊗1 Λ(G), (vi) Γ(F )⊗1 tΛ(G),

where F and G are graded strict polynomial functors which are additive.
Then there is an isomorphism of Pk-graded algebras A ' GrA.

Proof. — The idea is to use the regrading functor R1 (and take the
opposite algebra or apply the functor t if needed) to go back to the graded
commutative case. Let us treat the case where GrA = S(F )⊗ Λ(G).

Since A is (1, 1)-commutative, so is GrA, hence so are S(F ) and Λ(G)
by lemma 4.13. Thus F (resp. G) must be concentrated in odd (resp. even)
degrees. Thus R1A is graded commutative, with graded object

Gr(R1A) = R1(GrA) = tS(R1F )⊗ Λ(R1G).

Let us denote by Bop the opposite algebra of an algebra B. Applying op and
t (which do not alter graded commutativity) we get a graded commutative
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algebra (tR1A)op with graded object S(R1F ) ⊗ Λ(R1G). So by proposi-
tion 14.5, (tR1A)op is isomorphic to S(R1F )⊗ Λ(R1G). Applying op and
R−1 to the isomorphism obtained, we get an isomorphism A ' GrA. �

14.2.2. The characteristic two case. The following proposition is proved
exactly in the same fashion as proposition 14.5.

Proposition 14.7 (Splitting result III). — Let k be a field of character-
istic 2, and let A be a commutative filtered Pk-graded algebra. Assume that
there is a graded strict polynomial functor F which is additive, such that
GrA is an exponential functor of the form S(F ) or Γ(F ). Then A ' GrA
as Pk-graded algebras.

Proposition 14.7 will be sufficient to prove that the filtrations on the
abutment of the twisting spectral sequence split in characteristic 2, except
for the cases of E(Λ(t+s), S(s)) and E(Γ(t+s),Λ(s)). In these cases, the alge-
bras are of exterior type. So we need a analogue of proposition 14.7 when
GrA = Λ(F ). Two difficulties arise when we want to adapt the proof of
proposition 14.5 to this case. First, there might be non-trivial extensions
between certain twisted exterior powers in characteristic 2 (e.g. the exten-
sion Λ2 ↪→ Γ2 � Λ1 (1)). Second, exterior algebras still satisfy a universal
property in characteristic 2, but for strictly anticommutative algebras (re-
call that a k-algebra is strictly anticommutative if for all x ∈ A, x · x = 0).
So the best we can easily prove is the following statement.

Proposition 14.8 (Splitting result IV). — Let k be a field of character-
istic 2, and let A be a strictly anticommutative filtered Pk-graded algebra.
Assume that GrA is an exponential functor of the form Λ(F ), where F is a
graded strict polynomial functor of the following very specific form. There
exists an integer r such that F is a direct sum of copies graded copies
of I(r). Then A ' GrA as Pk-graded algebras.

Proof. — The proof that Ext1
Pk

(GrAi,d,GrAi,d) equals zero reduces, by
iterated uses of lemma 5.7, to checking that for all d > 0, Ext1

Pk
(Λd (r),

Λd (r)). But the latter fact follows from theorem 13.4 and the vanishing of
E1(Λd,Λd). So lemma 14.1 yields an isomorphism of bigraded strict poly-
nomial functors A ' GrA. To get an isomorphism of algebras, we use
the universal property of exterior algebras, exactly as in the third step
of the proof of proposition 14.5, and we conclude the proof in the same
fashion. �
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15. Final results

15.1. Statement of the results

We now describe the Pk-graded algebras E(X(r), Y (s)), for all classical
exponential functors X,Y . Duality yields an isomorphism of exponential
functors E(X(r), Y (s)) ' E(Y ](s), X](r)), so we can restrict to the case
r > s. Hence we write r = t + s, with t > 0. We recall the notations and
conventions needed to read the statements.

(1) In the Pk-graded algebra:

E(X(t+s), Y (s)) =
⊕

i>0,d>0 Ei(Xd(s+t), Y p
td(s)),

Ei(Xd(s+t), Y p
td(s)) has cohomological degree i and weight dps+t.

The product is given by convolution, cf. definition 4.8.
(2) The functor I(r)〈h〉 denotes a copy of the r-th Frobenius twist,

placed in cohomological degree h (and weight pr). If X = S,Λ or Γ,
and F is a graded functor, then X(F ) denotes the composite X ◦F ,
with the usual gradings. The tensor product ⊗ is the usual tensor
product of graded algebras (i.e. weights do not bring any Koszul
sign).

(3) In particular, in the theorems below, the functors I(x+s+t)〈h〉 ap-
pearing on the right hand side of the isomorphisms are direct sum-
mands of the functors Eh(Xpx(s+t), Y p

x+t(s)).
We order the classical exponential functors as follows: Γ < Λ < S.

Theorem 15.1 (Pairs (X,Y ) with X 6 Y ). — Let k be a field of pos-
itive characteristic p, let s, t be nonnegative integers, and let X be an
arbitrary exponential functor. There are isomorphisms of Pk-graded alge-
bras:

E(X(t+s), S(s)) ' X]

( ⊕
06i<ps

I(t+s)〈2ipt〉
)
,

E(Γ(t+s),Λ(s)) ' Λ
( ⊕

06i<ps
I(t+s)〈(2i+ 1)pt − 1〉

)
,

E(Λ(t+s),Λ(s)) ' Γ
( ⊕

06i<ps
I(t+s)〈(2i+ 1)pt − 1〉

)
,

E(Γ(t+s),Γ(s)) ' Γ
( ⊕

06i<ps
I(t+s)〈(2i+ 2)pt − 2〉

)
.
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Now we turn to the pairs (X,Y ), with X > Y . These algebras were
not computed in [11], where the authors suspected that there are “no easy
answer” for such pairs. Our approach explains why Ext-groups for these
pairs are much more difficult to compute. Indeed, for all pairs (X,Y ), the
Pk-algebra E(X(t+s), Y (t)) can be deduced from E(X,Y ). The latter are
very easy to compute if X 6 Y (they reduce to Hom-groups), but far
from being trivial if X > Y (they correspond to the homology of some
Eilenberg Mac Lane spaces). The results of theorems 15.2, 15.3 and 15.4
do not coincide with the results of [5], we compare them in section 15.3.

Theorem 15.2 (Pairs (X,Y ) with X > Y for p = 2). — Let k be a
field of characteristic p = 2, and let s, t be nonnegative integers. There are
isomorphisms of Pk-graded algebras:

E(S(t+s),Λ(s)) ' Γ
( ⊕

06i<ps, 06k
I(k+t+s)〈(2i+ 1)pk+t − 1〉

)
,

E(Λ(t+s),Γ(s)) ' Γ
( ⊕

06i<ps, 06k
I(k+t+s)〈(2i+ 2)pk+t − pk − 1〉

)
,

E(S(t+s),Γ(s)) ' Γ
( ⊕

06i<ps, 06k, 06`
I(k+`+t+s)〈(2i+ 2)pk+`+t − pk − 1〉

)
.

The computation of E(S(t+s),Λ(s)) and E(Λ(t+s),Γ(s)) in odd charac-
teristic brings special signs. Recall from section 4.3 that A ⊗1 B denotes
the “signed tensor product” of two Pk-graded algebras, and tA denotes the
weight twisted algebra associated to A (defined in section 6).

Theorem 15.3. — Let k be a field of odd characteristic p, and let s, t be
nonnegative integers. The Pk-graded algebra E(S(t+s),Λ(s)) is isomorphic
to:

Λ
( ⊕

06i<ps, 06k
I(k+t+s)〈(2i+ 1)pk+t − 1〉

)

⊗1 tΓ
( ⊕

06i<ps, 06k
I(k+1+t+s)〈(2i+ 1)pk+1+t − 2〉

)
.

The Pk-graded algebra E(Λ(t+s),Γ(s)) is isomorphic to:

Λ
( ⊕

06i<ps, 06k
I(k+t+s)〈(2i+ 2)pk+t − pk − 1〉

)

⊗1 tΓ
( ⊕

06i<ps, 06k
I(k+1+t+s)〈(2i+ 2)pk+1+t − pk+1 − 2〉

)
.
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Theorem 15.4. — Let k be a field of odd characteristic p, and let s, t be
nonnegative integers. The Pk-graded algebra E(S(t+s),Γ(s)) is isomorphic
to the tensor product:

Γ
( ⊕

06i<ps, 06k
I(k+t+s)〈(2i+ 2)pk+t − 2〉

)

⊗ Λ
( ⊕

06i<ps, 06k, 06`
I(k+`+1+t+s)〈(2i+ 2)pk+`+1+t − 2pk − 1〉

)

⊗ Γ
( ⊕

06i<ps, 06k, 06`
I(k+`+2+t+s)〈(2i+ 2)pk+`+2+t − 2pk+1 − 2〉

)

15.2. Proof of theorems 15.1-15.4

We proceed in several steps.

Step 1: Computation of E(X,Y ). There are two cases. If X 6 Y ,
then E(X,Y ) reduces to H(X,Y ), which is easy to compute, cf. lemma 4.6.
If X > Y , then E(X,Y ) is rather complicated, and computed in theo-
rems 10.16 and 10.17. In all cases, E(X,Y ) is a symmetric, an exterior or
a divided power algebra (or a tensor product of these) on some generators
I(b)〈a〉.

Step 2: Computation of E(X(t), Y ). By corollary 12.2, E(X(t), Y ) is
isomorphic to (Rα(Y )E(X,Y ))(t). Under this isomorphism, each genera-
tor I(b)〈a〉 of E(X,Y ) corresponds to a generator I(b+t)〈a + pbα(Y )〉 of
E(X(t), Y ), where α(S) = 0, α(Λ) = pt − 1 and α(Γ) = 2(pt − 1). Ob-
serve that in odd characteristic, α(Y ) is even, so that no additional sign is
introduced by the regrading functor Rα(Y ).

Step 3: Computation of E(X(t+s), Y (s)), up to filtration. By the-
orem 13.4, E(X(t+s), Y (s)) is, up to a filtration, an algebra of the same
kind as E(X(t), Y ), with more generators. To be more specific, each gener-
ator I(b+t)〈a+ pbα(Y )〉 of E(X(t), Y ) gives birth to a family of generators
(indexed by an integer i, with 0 6 i < ps):

I(b+t+s)〈a+ pbα(Y ∗) + 2ipb+t〉 = I(b+t+s)〈(2ipt + α(Y ))pb + a〉.

Step 4: Filtrations split. Finally, we have to prove that the filtrations
involved are trivial. This follows directly from the splitting results of sec-
tion 14, except in the cases of E(Λ(t+s), S(s)) and E(Γ(t+s),Λ(s)) when k
has characteristic 2. So let us assume that all the results but these two
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cases are proved. To prove the triviality of the filtrations of E(Λ(t+s), S(s))
and E(Γ(t+s),Λ(s)), we want to apply proposition 14.8. For this we need to
check strict anticommutativity. So the following lemma finishes the proof.

Lemma 15.5. — Let k be a field of characteristic 2. For all nonnegative
integers s, t, the Pk-graded algebras E(Λ(t+s), S(s)) and E(Γ(t+s),Λ(s)) are
strictly anticommutative (that is, for all x, x · x = 0 in these algebras).

Proof. — Let us prove that E(Γ(t+s),Λ(s)) is strictly anticommutative
(the proof for E(Λ(t+s), S(s)) is similar). Since k has characteristic 2, we
have an injective morphism of algebras α : Λ ↪→ Γ. It induces a morphism:

β : E(Γ(t+s),Λ(s))→ E(Λ(t+s),Λ(s)).

To prove that E(Γ(t+s),Λ(s)) is strictly anticommutative, it suffices to prove
that β is injective. Indeed, we already know that E(Λ(t+s),Λ(s)) is strictly
anticommutative since it is a divided power algebra.
For all d > 0, we have a commutative square, where the vertical arrows

are injections induced by the canonical map Λd ↪→ ⊗d:

H(Γd,⊗d)
H(α,⊗d) // H(Λd,⊗d)

H(Γd,Λd)
H(α,Λd) //

?�

OO

H(Λd,Λd)
?�

OO
.

Now the map H(α,⊗d) is an isomorphism (by lemma 5.5), so H(α,Λd)
is injective. Using proposition 12.1, we get an injection H(Γd (t),Λdpt) ↪→
H(Λd (t),Λdpt). By theorem 13.4, Gr(β) equals the evaluation of this map
on Es ⊗ V (s), hence it is injective. We deduce the injectivity of β. �

15.3. Comparison with [11, 5]

15.3.1. The case X 6 Y . In this case, the algebras

Ext∗Pk
(X∗ (s+t), Y ∗ (s)) = E(X(s+t), Y (s))(k)

were first computed in [11]. Theorem 15.1 agrees with [11, Thm 5.8]. For
example, we assert that E(Λ,Λ)(k) is a divided power algebra on genera-
tors gi ∈ Ext(2i+1)pt−1

Pk
(I(t+s),Λpt (s)), for 0 6 i < ps. This is exactly [11,

Thm 5.8(6)].
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15.3.2. The case X > Y . The algebras with X > Y were first computed
in [5]. Our computations differ from the results of [5].
First, theorems 15.2 and 15.3 do not agree with [5, Thm 3.2]. It is already

explained in remark 4.7 why [5, Thm 3.2] is false in characteristic 2. In odd
characteristic, the two results agree as graded functors, but the descriptions
of the products only agree up to signs. Unlike our result, [5, Thm 3.2] does
not yield a (1, 1)-commutative algebra. Indeed, in an algebra of the form
Λ(A) ⊗ Γ(B), where A is concentrated in even degrees and odd weights,
and B is concentrated in odd degrees and odd weights, if there are two
non proportional elements a1, a2 ∈ A, we can choose b ∈ B and form the
products x = a1⊗ b and y = a2⊗γ2(b), where γ2(b) = b⊗ b ∈ Γ2(B). Then
one has

x · y = (a1 ∧ a2)⊗ bγ2(b) = −(a2 ∧ a1)⊗ γ2(b)b = −y · x.

Since x · y 6= 0, this contradicts (1, 1)-commutativity.
Finally, theorem 15.4 does not agree with [5, Cor 4.15]. To be more

specific, the two results look the same, but in our computation, the result-
ing algebra has more generators. For example, theorem 15.4 asserts that
E(Sp,Γp) is equal to Γp〈0〉⊕ I(1)〈2p− 2〉⊕ I(1)〈2p− 3〉, so the total dimen-
sion of E(Sp,Γp)(k) is 3. On the other hand, [5, Cor 4.15] predicts that this
total dimension is 2. So the following independent elementary computation
argues in favor of our result.

Lemma 15.6. — If k has characteristic p, then ExtiPk
(Sp,Γp) equals k

if i = 0, 2p− 2 or 2p− 3, and is zero otherwise.

Proof. — We need the following elementary facts. For 0 6 k < p, the
functor Λk ⊗ Sp−k is injective as a direct summand of ⊗k ⊗ Sp−k, and Γk
is injective since it is isomorphic to Sk. Moreover:

HomPk(Sp, Sp) = k with basis the identity map,

HomPk(Sp, S1 ⊗ Sp−1) = k with basis the comultiplication,

HomPk(Sp,Λk ⊗ Sp−k) = 0 for k > 2.

To prove lemma 15.6, we cut the exact Koszul complexes:

Λp ↪→ Λp−1 ⊗ S1 → · · · → Λ1 ⊗ Sp−1 � Sp

Γp ↪→ Γp−1 ⊗ Λ1 → · · · → Γ1 ⊗ Λp−1 � Λp

into short exact sequences and analyze the long Ext∗Pk
(Sp,−)-exact se-

quence associated to them. We begin on the right with the first complex.
Let K be the kernel of the multiplication S1 ⊗ Sp−1 � Sp. Since the
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composite of the comultiplication Sp → S1 ⊗ Sp−1 and the multiplication
S1 ⊗ Sp−1 � Sp equals p times the identity map (hence zero), we obtain
that Exti(Sp,K) ' k if i = 0, 1 and 0 otherwise. For the other short exact
sequences except the one involving Γp, the terms Ext∗Pk

(Sp,Λk⊗Sp−k) and
Ext∗Pk

(Sp,Λk⊗Γp−k) are trivial so the long exact sequence induces a shift-
ing. Finally the last short exact sequence Γp ↪→ Γ1 ⊗ Γp−1 � C induces a
shifting and also creates a nonzero element in HomPk(Sp,Γp). �
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