We show that the tangent cone at the identity is not a complete quasiconformal invariant for sub-Riemannian nilpotent groups. Namely, we show that there exists a nilpotent Lie group equipped with left invariant sub-Riemannian metric that is not locally quasiconformally equivalent to its tangent cone at the identity. In particular, such spaces are not locally bi-Lipschitz homeomorphic. The result is based on the study of Carnot groups that are rigid in the sense that their only quasiconformal maps are the translations and the dilations.
Nous montrons que pour les groupes nilpotents sous-riemanniens, le cône tangent en l’identité n’est pas un invariant quasi-conforme complet. À savoir, nous montrons qu’il existe un groupe de Lie nilpotent muni d’une métrique sous-riemannienne invariante à gauche qui n’est pas localement quasi-conformément équivalent à son cône tangent en l’identité. En particulier, ces espaces ne sont pas localement bi-Lipschitziens. Le résultat repose sur l’étude des groupes de Carnot qui sont rigides dans le sens que leurs seules applications quasi-conformes sont les translations et les dilatations.
Keywords: Sub-Riemannian geometry, metric tangents, Gromov-Hausdorff convergence, nilpotent groups, Carnot groups, quasiconformal maps
Mot clés : Géométrie sous-riemannienne, tangentes métriques, convergence de Gromov-Hausdorff, groupes nilpotents, groupes de Carnot, applications quasi-conforme
Le Donne, Enrico 1; Ottazzi, Alessandro 2; Warhurst, Ben 3
@article{AIF_2014__64_6_2265_0, author = {Le Donne, Enrico and Ottazzi, Alessandro and Warhurst, Ben}, title = {Ultrarigid tangents of {sub-Riemannian} nilpotent groups}, journal = {Annales de l'Institut Fourier}, pages = {2265--2282}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {6}, year = {2014}, doi = {10.5802/aif.2912}, mrnumber = {3331166}, zbl = {06387339}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2912/} }
TY - JOUR AU - Le Donne, Enrico AU - Ottazzi, Alessandro AU - Warhurst, Ben TI - Ultrarigid tangents of sub-Riemannian nilpotent groups JO - Annales de l'Institut Fourier PY - 2014 SP - 2265 EP - 2282 VL - 64 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2912/ DO - 10.5802/aif.2912 LA - en ID - AIF_2014__64_6_2265_0 ER -
%0 Journal Article %A Le Donne, Enrico %A Ottazzi, Alessandro %A Warhurst, Ben %T Ultrarigid tangents of sub-Riemannian nilpotent groups %J Annales de l'Institut Fourier %D 2014 %P 2265-2282 %V 64 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2912/ %R 10.5802/aif.2912 %G en %F AIF_2014__64_6_2265_0
Le Donne, Enrico; Ottazzi, Alessandro; Warhurst, Ben. Ultrarigid tangents of sub-Riemannian nilpotent groups. Annales de l'Institut Fourier, Volume 64 (2014) no. 6, pp. 2265-2282. doi : 10.5802/aif.2912. https://aif.centre-mersenne.org/articles/10.5802/aif.2912/
[1] Conformality and -harmonicity in Carnot groups, Duke Math. J., Volume 135 (2006) no. 3, pp. 455-479 | DOI | MR | Zbl
[2] The differential of a quasi-conformal mapping of a Carnot-Carathéodory space, Geom. Funct. Anal., Volume 5 (1995) no. 2, pp. 402-433 | DOI | MR | Zbl
[3] Some remarks on the definition of tangent cones in a Carnot-Carathéodory space, J. Anal. Math., Volume 80 (2000), pp. 299-317 | DOI | MR | Zbl
[4] On Carnot-Carathéodory metrics, J. Differential Geom., Volume 21 (1985) no. 1, pp. 35-45 http://projecteuclid.org/euclid.jdg/1214439462 | MR | Zbl
[5] Contact and 1-quasiconformal maps on Carnot groups, J. Lie Theory, Volume 21 (2011) no. 4, pp. 787-811 | MR | Zbl
[6] Croissance des boules et des géodésiques fermées dans les nilvariétés, Ergodic Theory Dynam. Systems, Volume 3 (1983) no. 3, pp. 415-445 | DOI | MR | Zbl
[7] Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2), Volume 129 (1989) no. 1, pp. 1-60 | DOI | MR | Zbl
[8] Harmonic analysis, cohomology, and the large-scale geometry of amenable groups, Acta Math., Volume 192 (2004) no. 2, pp. 119-185 | DOI | MR | Zbl
[9] On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto Univ., Volume 10 (1970), pp. 1-82 | MR | Zbl
[10] Obstructions to local equivalence of distributions, Mat. Zametki, Volume 29 (1981) no. 6, p. 939-947, 957 | MR | Zbl
[11] Contact and Pansu differentiable maps on Carnot groups, Bull. Aust. Math. Soc., Volume 77 (2008) no. 3, pp. 495-507 | DOI | MR | Zbl
[12] Differential systems associated with simple graded Lie algebras, Progress in differential geometry (Adv. Stud. Pure Math.), Volume 22, Math. Soc. Japan, Tokyo, 1993, pp. 413-494 | MR | Zbl
Cited by Sources: