Nous montrons que pour les groupes nilpotents sous-riemanniens, le cône tangent en l’identité n’est pas un invariant quasi-conforme complet. À savoir, nous montrons qu’il existe un groupe de Lie nilpotent muni d’une métrique sous-riemannienne invariante à gauche qui n’est pas localement quasi-conformément équivalent à son cône tangent en l’identité. En particulier, ces espaces ne sont pas localement bi-Lipschitziens. Le résultat repose sur l’étude des groupes de Carnot qui sont rigides dans le sens que leurs seules applications quasi-conformes sont les translations et les dilatations.
We show that the tangent cone at the identity is not a complete quasiconformal invariant for sub-Riemannian nilpotent groups. Namely, we show that there exists a nilpotent Lie group equipped with left invariant sub-Riemannian metric that is not locally quasiconformally equivalent to its tangent cone at the identity. In particular, such spaces are not locally bi-Lipschitz homeomorphic. The result is based on the study of Carnot groups that are rigid in the sense that their only quasiconformal maps are the translations and the dilations.
Keywords: Sub-Riemannian geometry, metric tangents, Gromov-Hausdorff convergence, nilpotent groups, Carnot groups, quasiconformal maps
Mot clés : Géométrie sous-riemannienne, tangentes métriques, convergence de Gromov-Hausdorff, groupes nilpotents, groupes de Carnot, applications quasi-conforme
Le Donne, Enrico 1 ; Ottazzi, Alessandro 2 ; Warhurst, Ben 3
@article{AIF_2014__64_6_2265_0, author = {Le Donne, Enrico and Ottazzi, Alessandro and Warhurst, Ben}, title = {Ultrarigid tangents of {sub-Riemannian} nilpotent groups}, journal = {Annales de l'Institut Fourier}, pages = {2265--2282}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {6}, year = {2014}, doi = {10.5802/aif.2912}, mrnumber = {3331166}, zbl = {06387339}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2912/} }
TY - JOUR AU - Le Donne, Enrico AU - Ottazzi, Alessandro AU - Warhurst, Ben TI - Ultrarigid tangents of sub-Riemannian nilpotent groups JO - Annales de l'Institut Fourier PY - 2014 SP - 2265 EP - 2282 VL - 64 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2912/ DO - 10.5802/aif.2912 LA - en ID - AIF_2014__64_6_2265_0 ER -
%0 Journal Article %A Le Donne, Enrico %A Ottazzi, Alessandro %A Warhurst, Ben %T Ultrarigid tangents of sub-Riemannian nilpotent groups %J Annales de l'Institut Fourier %D 2014 %P 2265-2282 %V 64 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2912/ %R 10.5802/aif.2912 %G en %F AIF_2014__64_6_2265_0
Le Donne, Enrico; Ottazzi, Alessandro; Warhurst, Ben. Ultrarigid tangents of sub-Riemannian nilpotent groups. Annales de l'Institut Fourier, Tome 64 (2014) no. 6, pp. 2265-2282. doi : 10.5802/aif.2912. https://aif.centre-mersenne.org/articles/10.5802/aif.2912/
[1] Conformality and -harmonicity in Carnot groups, Duke Math. J., Volume 135 (2006) no. 3, pp. 455-479 | DOI | MR | Zbl
[2] The differential of a quasi-conformal mapping of a Carnot-Carathéodory space, Geom. Funct. Anal., Volume 5 (1995) no. 2, pp. 402-433 | DOI | MR | Zbl
[3] Some remarks on the definition of tangent cones in a Carnot-Carathéodory space, J. Anal. Math., Volume 80 (2000), pp. 299-317 | DOI | MR | Zbl
[4] On Carnot-Carathéodory metrics, J. Differential Geom., Volume 21 (1985) no. 1, pp. 35-45 http://projecteuclid.org/euclid.jdg/1214439462 | MR | Zbl
[5] Contact and 1-quasiconformal maps on Carnot groups, J. Lie Theory, Volume 21 (2011) no. 4, pp. 787-811 | MR | Zbl
[6] Croissance des boules et des géodésiques fermées dans les nilvariétés, Ergodic Theory Dynam. Systems, Volume 3 (1983) no. 3, pp. 415-445 | DOI | MR | Zbl
[7] Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2), Volume 129 (1989) no. 1, pp. 1-60 | DOI | MR | Zbl
[8] Harmonic analysis, cohomology, and the large-scale geometry of amenable groups, Acta Math., Volume 192 (2004) no. 2, pp. 119-185 | DOI | MR | Zbl
[9] On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto Univ., Volume 10 (1970), pp. 1-82 | MR | Zbl
[10] Obstructions to local equivalence of distributions, Mat. Zametki, Volume 29 (1981) no. 6, p. 939-947, 957 | MR | Zbl
[11] Contact and Pansu differentiable maps on Carnot groups, Bull. Aust. Math. Soc., Volume 77 (2008) no. 3, pp. 495-507 | DOI | MR | Zbl
[12] Differential systems associated with simple graded Lie algebras, Progress in differential geometry (Adv. Stud. Pure Math.), Volume 22, Math. Soc. Japan, Tokyo, 1993, pp. 413-494 | MR | Zbl
Cité par Sources :