On the moduli b-divisors of lc-trivial fibrations
Annales de l'Institut Fourier, Volume 64 (2014) no. 4, pp. 1721-1735.

Roughly speaking, by using the semi-stable minimal model program, we prove that the moduli part of an lc-trivial fibration coincides with that of a klt-trivial fibration induced by adjunction after taking a suitable generically finite cover. As an application, we obtain that the moduli part of an lc-trivial fibration is b-nef and abundant by Ambro’s result on klt-trivial fibrations.

Grosso modo, en utilisant le programme des modèles minimaux semi-stables, nous montrons que la partie modulaire d’une fibration lc-triviale coïncide avec celle d’une fibration klt-triviale induite par adjonction aprés changement de base par un morphisme génériquement fini. Comme application, eu utilisant le résultat de Ambro sur fibrations klt-triviales, on obtient que la partie modulaire d’une fibration lc-triviale est b-nef et abondante.

DOI: 10.5802/aif.2894
Classification: 14N30, 14E30, 14J10
Keywords: semi-stable minimal model program, canonical bundle formulae, lc-trivial fibrations, klt-trivial fibrations
Mot clés : programme des modèles minimaux semi-stables, formules de fibré canoniques, fibrations lc-triviales, fibrations klt-triviales

Fujino, Osamu 1; Gongyo, Yoshinori 2, 3

1 Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan
2 Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK
3 Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8914 Japan.
@article{AIF_2014__64_4_1721_0,
     author = {Fujino, Osamu and Gongyo, Yoshinori},
     title = {On the moduli b-divisors of lc-trivial fibrations},
     journal = {Annales de l'Institut Fourier},
     pages = {1721--1735},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {64},
     number = {4},
     year = {2014},
     doi = {10.5802/aif.2894},
     mrnumber = {3329677},
     zbl = {06387321},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2894/}
}
TY  - JOUR
AU  - Fujino, Osamu
AU  - Gongyo, Yoshinori
TI  - On the moduli b-divisors of lc-trivial fibrations
JO  - Annales de l'Institut Fourier
PY  - 2014
SP  - 1721
EP  - 1735
VL  - 64
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2894/
DO  - 10.5802/aif.2894
LA  - en
ID  - AIF_2014__64_4_1721_0
ER  - 
%0 Journal Article
%A Fujino, Osamu
%A Gongyo, Yoshinori
%T On the moduli b-divisors of lc-trivial fibrations
%J Annales de l'Institut Fourier
%D 2014
%P 1721-1735
%V 64
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2894/
%R 10.5802/aif.2894
%G en
%F AIF_2014__64_4_1721_0
Fujino, Osamu; Gongyo, Yoshinori. On the moduli b-divisors of lc-trivial fibrations. Annales de l'Institut Fourier, Volume 64 (2014) no. 4, pp. 1721-1735. doi : 10.5802/aif.2894. https://aif.centre-mersenne.org/articles/10.5802/aif.2894/

[1] Ambro, F. Shokurov’s boundary property, J. Differential Geom., Volume 67 (2004) no. 2, pp. 229-255 | MR | Zbl

[2] Ambro, F. The moduli b-divisor of an lc-trivial fibration, Compos. Math., Volume 141 (2005) no. 2, pp. 385-403 | DOI | MR | Zbl

[3] Birkar, C.; Chen, Y. Images of manifolds with semi-ample anti-canonical divisor (to appear in J. Algebraic Geom)

[4] Corti, A. 3-fold flips after Shokurov, Flips for 3-folds and 4-folds (Oxford Lecture Ser. Math. Appl.), Volume 35, Oxford Univ. Press, Oxford, 2007, pp. 18-48 | MR | Zbl

[5] Deligne, P. Théorie de Hodge. II, (French) Inst. Hautes Études Sci. Publ. Math., Volume 40 (1971), pp. 5-57 | DOI | Numdam | MR | Zbl

[6] Floris, E. Inductive approach to effective b-semiampleness, Int. Math. Res. Not. IMRN, Volume 2014 (2014) no. 6, p. 1645-1492 | MR

[7] Fujino, O. Higher direct images of log canonical divisors and positivity theorems preprint (2003). arXiv:math/0302073v1

[8] Fujino, O. Abundance theorem for semi log canonical threefolds, Duke Math. J., Volume 102 (2000) no. 3, pp. 513-532 | DOI | MR | Zbl

[9] Fujino, O. A canonical bundle formula for certain algebraic fiber spaces and its applications, Nagoya Math. J., Volume 172 (2003), pp. 129-171 | MR | Zbl

[10] Fujino, O. Higher direct images of log canonical divisors, J. Differential Geom., Volume 66 (2004) no. 3, pp. 453-479 | MR | Zbl

[11] Fujino, O. What is log terminal?, Flips for 3-folds and 4-folds (Oxford Lecture Ser. Math. Appl.), Volume 35, Oxford Univ. Press, Oxford, 2007, pp. 49-62 | MR | Zbl

[12] Fujino, O. Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci., Volume 47 (2011) no. 3, pp. 727-789 | DOI | MR | Zbl

[13] Fujino, O. On Kawamata’s theorem, Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, pp. 305-315 | MR | Zbl

[14] Fujino, O. Semi-stable minimal model program for varieties with trivial canonical divisor, Proc. Japan Acad. Ser. A Math. Sci., Volume 87 (2011) no. 3, pp. 25-30 | DOI | MR | Zbl

[15] Fujino, O. Basepoint-free theorems: saturation, b-divisors, and canonical bundle formula, Algebra Number Theory, Volume 6 (2012) no. 4, pp. 797-823 | DOI | MR | Zbl

[16] Fujino, O. Some remarks on the minimal model program for log canonical pairs, to appear in Kodaira Centennial issue of Journal of Mathematical Sciences, the University of Tokyo

[17] Fujino, O.; Fujisawa, T. Variations of mixed Hodge structure and semi-positivity theorems (to appear in Publ. Res. Inst. Math. Sci.) | Zbl

[18] Katz, N. M. The regularity theorem in algebraic geometry, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, Paris, 1971, pp. 437-443 | MR | Zbl

[19] Kawamata, Y. Subadjunction of log canonical divisors for a subvariety of codimension 2, Birational algebraic geometry (Baltimore, MD, 1996) (Contemp. Math.), Amer. Math. Soc., Providence, RI, 1997, pp. 79-88 | MR | Zbl

[20] Kempf, G.; Knudsen, F.; Mumford, D.; B., Saint-Donat Toroidal embeddings. I, Lecture Notes in Mathematics, 339, Springer-Verlag, Berlin-New York, 1973 | MR | Zbl

[21] Kollár, J. Kodaira’s canonical bundle formula and adjunction, Flips for 3-folds and 4-folds (Oxford Lecture Ser. Math. Appl.), Volume 35, Oxford Univ. Press, Oxford, 2007, pp. 134-162 | MR | Zbl

[22] Prokhorov, Yu. G.; Shokurov, V. V. Towards the second main theorem on complements, J. Algebraic Geom., Volume 18 (2009) no. 1, pp. 151-199 | DOI | MR | Zbl

[23] Saito, M.-H.; Shimizu, Y.; Usui, S. Variation of mixed Hodge structure and the Torelli problem, Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), North-Holland, Amsterdam, 1987, pp. 649-693 | MR | Zbl

Cited by Sources: