Roughly speaking, by using the semi-stable minimal model program, we prove that the moduli part of an lc-trivial fibration coincides with that of a klt-trivial fibration induced by adjunction after taking a suitable generically finite cover. As an application, we obtain that the moduli part of an lc-trivial fibration is b-nef and abundant by Ambro’s result on klt-trivial fibrations.
Grosso modo, en utilisant le programme des modèles minimaux semi-stables, nous montrons que la partie modulaire d’une fibration lc-triviale coïncide avec celle d’une fibration klt-triviale induite par adjonction aprés changement de base par un morphisme génériquement fini. Comme application, eu utilisant le résultat de Ambro sur fibrations klt-triviales, on obtient que la partie modulaire d’une fibration lc-triviale est b-nef et abondante.
Keywords: semi-stable minimal model program, canonical bundle formulae, lc-trivial fibrations, klt-trivial fibrations
Mot clés : programme des modèles minimaux semi-stables, formules de fibré canoniques, fibrations lc-triviales, fibrations klt-triviales
Fujino, Osamu 1; Gongyo, Yoshinori 2, 3
@article{AIF_2014__64_4_1721_0, author = {Fujino, Osamu and Gongyo, Yoshinori}, title = {On the moduli b-divisors of lc-trivial fibrations}, journal = {Annales de l'Institut Fourier}, pages = {1721--1735}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {4}, year = {2014}, doi = {10.5802/aif.2894}, mrnumber = {3329677}, zbl = {06387321}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2894/} }
TY - JOUR AU - Fujino, Osamu AU - Gongyo, Yoshinori TI - On the moduli b-divisors of lc-trivial fibrations JO - Annales de l'Institut Fourier PY - 2014 SP - 1721 EP - 1735 VL - 64 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2894/ DO - 10.5802/aif.2894 LA - en ID - AIF_2014__64_4_1721_0 ER -
%0 Journal Article %A Fujino, Osamu %A Gongyo, Yoshinori %T On the moduli b-divisors of lc-trivial fibrations %J Annales de l'Institut Fourier %D 2014 %P 1721-1735 %V 64 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2894/ %R 10.5802/aif.2894 %G en %F AIF_2014__64_4_1721_0
Fujino, Osamu; Gongyo, Yoshinori. On the moduli b-divisors of lc-trivial fibrations. Annales de l'Institut Fourier, Volume 64 (2014) no. 4, pp. 1721-1735. doi : 10.5802/aif.2894. https://aif.centre-mersenne.org/articles/10.5802/aif.2894/
[1] Shokurov’s boundary property, J. Differential Geom., Volume 67 (2004) no. 2, pp. 229-255 | MR | Zbl
[2] The moduli b-divisor of an lc-trivial fibration, Compos. Math., Volume 141 (2005) no. 2, pp. 385-403 | DOI | MR | Zbl
[3] Images of manifolds with semi-ample anti-canonical divisor (to appear in J. Algebraic Geom)
[4] -fold flips after Shokurov, Flips for -folds and -folds (Oxford Lecture Ser. Math. Appl.), Volume 35, Oxford Univ. Press, Oxford, 2007, pp. 18-48 | MR | Zbl
[5] Théorie de Hodge. II, (French) Inst. Hautes Études Sci. Publ. Math., Volume 40 (1971), pp. 5-57 | DOI | Numdam | MR | Zbl
[6] Inductive approach to effective b-semiampleness, Int. Math. Res. Not. IMRN, Volume 2014 (2014) no. 6, p. 1645-1492 | MR
[7] Higher direct images of log canonical divisors and positivity theorems preprint (2003). arXiv:math/0302073v1
[8] Abundance theorem for semi log canonical threefolds, Duke Math. J., Volume 102 (2000) no. 3, pp. 513-532 | DOI | MR | Zbl
[9] A canonical bundle formula for certain algebraic fiber spaces and its applications, Nagoya Math. J., Volume 172 (2003), pp. 129-171 | MR | Zbl
[10] Higher direct images of log canonical divisors, J. Differential Geom., Volume 66 (2004) no. 3, pp. 453-479 | MR | Zbl
[11] What is log terminal?, Flips for -folds and -folds (Oxford Lecture Ser. Math. Appl.), Volume 35, Oxford Univ. Press, Oxford, 2007, pp. 49-62 | MR | Zbl
[12] Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci., Volume 47 (2011) no. 3, pp. 727-789 | DOI | MR | Zbl
[13] On Kawamata’s theorem, Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, pp. 305-315 | MR | Zbl
[14] Semi-stable minimal model program for varieties with trivial canonical divisor, Proc. Japan Acad. Ser. A Math. Sci., Volume 87 (2011) no. 3, pp. 25-30 | DOI | MR | Zbl
[15] Basepoint-free theorems: saturation, b-divisors, and canonical bundle formula, Algebra Number Theory, Volume 6 (2012) no. 4, pp. 797-823 | DOI | MR | Zbl
[16] Some remarks on the minimal model program for log canonical pairs, to appear in Kodaira Centennial issue of Journal of Mathematical Sciences, the University of Tokyo
[17] Variations of mixed Hodge structure and semi-positivity theorems (to appear in Publ. Res. Inst. Math. Sci.) | Zbl
[18] The regularity theorem in algebraic geometry, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, Paris, 1971, pp. 437-443 | MR | Zbl
[19] Subadjunction of log canonical divisors for a subvariety of codimension , Birational algebraic geometry (Baltimore, MD, 1996) (Contemp. Math.), Amer. Math. Soc., Providence, RI, 1997, pp. 79-88 | MR | Zbl
[20] Toroidal embeddings. I, Lecture Notes in Mathematics, 339, Springer-Verlag, Berlin-New York, 1973 | MR | Zbl
[21] Kodaira’s canonical bundle formula and adjunction, Flips for -folds and -folds (Oxford Lecture Ser. Math. Appl.), Volume 35, Oxford Univ. Press, Oxford, 2007, pp. 134-162 | MR | Zbl
[22] Towards the second main theorem on complements, J. Algebraic Geom., Volume 18 (2009) no. 1, pp. 151-199 | DOI | MR | Zbl
[23] Variation of mixed Hodge structure and the Torelli problem, Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), North-Holland, Amsterdam, 1987, pp. 649-693 | MR | Zbl
Cited by Sources: