Conformal blocks and cohomology in genus 0
Annales de l'Institut Fourier, Volume 64 (2014) no. 4, pp. 1669-1719.

We give a characterization of conformal blocks in terms of the singular cohomology of suitable smooth projective varieties, in genus 0 for classical Lie algebras and G 2 .

Nous donnons une caractérisation des blocs conformes en termes de cohomologie singulière des variétés projectives lisses appropriées, dans le genre 0 pour les algèbres de Lie classiques et G 2 .

DOI: 10.5802/aif.2893
Classification: 17B67, 14H60, 32G34, 81T40
Keywords: conformal blocks, logarithmic forms, singular cohomology
Belkale, Prakash 1; Mukhopadhyay, Swarnava 2

1 University of North Carolina Department of Mathematics Chapel Hill, NC 27599 (USA)
2 University of Maryland Department of Mathematics College Park, MD 20742 (USA)
@article{AIF_2014__64_4_1669_0,
     author = {Belkale, Prakash and Mukhopadhyay, Swarnava},
     title = {Conformal blocks  and cohomology in genus 0},
     journal = {Annales de l'Institut Fourier},
     pages = {1669--1719},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {64},
     number = {4},
     year = {2014},
     doi = {10.5802/aif.2893},
     mrnumber = {3329676},
     zbl = {06387320},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2893/}
}
TY  - JOUR
AU  - Belkale, Prakash
AU  - Mukhopadhyay, Swarnava
TI  - Conformal blocks  and cohomology in genus 0
JO  - Annales de l'Institut Fourier
PY  - 2014
SP  - 1669
EP  - 1719
VL  - 64
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2893/
UR  - https://www.ams.org/mathscinet-getitem?mr=3329676
UR  - https://zbmath.org/?q=an%3A06387320
UR  - https://doi.org/10.5802/aif.2893
DO  - 10.5802/aif.2893
LA  - en
ID  - AIF_2014__64_4_1669_0
ER  - 
%0 Journal Article
%A Belkale, Prakash
%A Mukhopadhyay, Swarnava
%T Conformal blocks  and cohomology in genus 0
%J Annales de l'Institut Fourier
%D 2014
%P 1669-1719
%V 64
%N 4
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2893
%R 10.5802/aif.2893
%G en
%F AIF_2014__64_4_1669_0
Belkale, Prakash; Mukhopadhyay, Swarnava. Conformal blocks  and cohomology in genus 0. Annales de l'Institut Fourier, Volume 64 (2014) no. 4, pp. 1669-1719. doi : 10.5802/aif.2893. https://aif.centre-mersenne.org/articles/10.5802/aif.2893/

[1] Awata, Hidetoshi; Tsuchiya, Akihiro; Yamada, Yasuhiko Integral formulas for the WZNW correlation functions, Nuclear Phys. B, Volume 365 (1991) no. 3, pp. 680-696 | DOI | MR

[2] Beauville, Arnaud Conformal blocks, fusion rules and the Verlinde formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) (Israel Math. Conf. Proc.), Volume 9 (1996), pp. 75-96 | MR | Zbl

[3] Belkale, Prakash Unitarity of the KZ/Hitchin connection on conformal blocks in genus 0 for arbitrary Lie algebras, J. Math. Pures Appl. (9), Volume 98 (2012) no. 4, pp. 367-389 | DOI | MR | Zbl

[4] Bezrukavnikov, Roman; Finkelberg, Michael; Schechtman, Vadim Factorizable sheaves and quantum groups, Lecture Notes in Mathematics, 1691, Springer-Verlag, Berlin, 1998, pp. x+287 | MR | Zbl

[5] Brieskorn, Egbert Sur les groupes de tresses [d’après V. I. Arnolʼd], Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, Springer, Berlin, 1973, p. 21-44. Lecture Notes in Math., Vol. 317 | Numdam | MR | Zbl

[6] Deligne, Pierre Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971) no. 40, pp. 5-57 | DOI | Numdam | MR | Zbl

[7] Feigin, Boris; Schechtman, Vadim; Varchenko, Alexander On algebraic equations satisfied by hypergeometric correlators in WZW models. II, Comm. Math. Phys., Volume 170 (1995) no. 1, pp. 219-247 http://projecteuclid.org/euclid.cmp/1104272957 | DOI | MR | Zbl

[8] Looijenga, Eduard Unitarity of SL (2)-conformal blocks in genus zero, J. Geom. Phys., Volume 59 (2009) no. 5, pp. 654-662 | DOI | MR | Zbl

[9] Looijenga, Eduard The KZ system via polydifferentials, Arrangements of hyperplanes—Sapporo 2009 (Adv. Stud. Pure Math.), Volume 62, Math. Soc. Japan, Tokyo, 2012, pp. 189-231 | MR | Zbl

[10] Ramadas, T. R. The “Harder-Narasimhan trace” and unitarity of the KZ/Hitchin connection: genus 0, Ann. of Math. (2), Volume 169 (2009) no. 1, pp. 1-39 | DOI | MR | Zbl

[11] Schechtman, Vadim V.; Terao, Hiroaki; Varchenko, Alexander N. Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors, J. Pure Appl. Algebra, Volume 100 (1995) no. 1-3, pp. 93-102 | DOI | MR | Zbl

[12] Schechtman, Vadim V.; Varchenko, Alexander N. Arrangements of hyperplanes and Lie algebra homology, Invent. Math., Volume 106 (1991) no. 1, pp. 139-194 | DOI | MR | Zbl

[13] Serre, Jean-Pierre Complex semisimple Lie algebras, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001, pp. x+74 (Translated from the French by G. A. Jones, Reprint of the 1987 edition) | DOI | MR | Zbl

[14] Sorger, Christoph La formule de Verlinde, Astérisque (1996) no. 237, pp. Exp. No. 794, 3, 87-114 (Séminaire Bourbaki, Vol. 1994/95) | Numdam | MR | Zbl

[15] Tsuchiya, Akihiro; Kanie, Yukihiro Vertex operators in conformal field theory on P 1 and monodromy representations of braid group, Conformal field theory and solvable lattice models (Kyoto, 1986) (Adv. Stud. Pure Math.), Volume 16, Academic Press, Boston, MA, 1988, pp. 297-372 | MR | Zbl

[16] Tsuchiya, Akihiro; Ueno, Kenji; Yamada, Yasuhiko Conformal field theory on universal family of stable curves with gauge symmetries, Integrable systems in quantum field theory and statistical mechanics (Adv. Stud. Pure Math.), Volume 19, Academic Press, Boston, MA, 1989, pp. 459-566 | MR | Zbl

[17] Ueno, Kenji Conformal field theory with gauge symmetry, Fields Institute Monographs, 24, American Mathematical Society, Providence, RI; Fields Institute for Research in Mathematical Sciences, Toronto, ON, 2008, pp. viii+168 | MR | Zbl

[18] Varchenko, A. Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups, Advanced Series in Mathematical Physics, 21, World Scientific Publishing Co., Inc., River Edge, NJ, 1995, pp. x+371 | DOI | MR | Zbl

Cited by Sources: