Nous donnons une caractérisation des blocs conformes en termes de cohomologie singulière des variétés projectives lisses appropriées, dans le genre pour les algèbres de Lie classiques et .
We give a characterization of conformal blocks in terms of the singular cohomology of suitable smooth projective varieties, in genus for classical Lie algebras and .
Keywords: conformal blocks, logarithmic forms, singular cohomology
Mot clés : blocs conformes, formes logarithmiques, cohomologie singulière
Belkale, Prakash 1 ; Mukhopadhyay, Swarnava 2
@article{AIF_2014__64_4_1669_0, author = {Belkale, Prakash and Mukhopadhyay, Swarnava}, title = {Conformal blocks and cohomology in genus 0}, journal = {Annales de l'Institut Fourier}, pages = {1669--1719}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {4}, year = {2014}, doi = {10.5802/aif.2893}, mrnumber = {3329676}, zbl = {06387320}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2893/} }
TY - JOUR AU - Belkale, Prakash AU - Mukhopadhyay, Swarnava TI - Conformal blocks and cohomology in genus 0 JO - Annales de l'Institut Fourier PY - 2014 SP - 1669 EP - 1719 VL - 64 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2893/ DO - 10.5802/aif.2893 LA - en ID - AIF_2014__64_4_1669_0 ER -
%0 Journal Article %A Belkale, Prakash %A Mukhopadhyay, Swarnava %T Conformal blocks and cohomology in genus 0 %J Annales de l'Institut Fourier %D 2014 %P 1669-1719 %V 64 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2893/ %R 10.5802/aif.2893 %G en %F AIF_2014__64_4_1669_0
Belkale, Prakash; Mukhopadhyay, Swarnava. Conformal blocks and cohomology in genus 0. Annales de l'Institut Fourier, Tome 64 (2014) no. 4, pp. 1669-1719. doi : 10.5802/aif.2893. https://aif.centre-mersenne.org/articles/10.5802/aif.2893/
[1] Integral formulas for the WZNW correlation functions, Nuclear Phys. B, Volume 365 (1991) no. 3, pp. 680-696 | DOI | MR
[2] Conformal blocks, fusion rules and the Verlinde formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) (Israel Math. Conf. Proc.), Volume 9 (1996), pp. 75-96 | MR | Zbl
[3] Unitarity of the KZ/Hitchin connection on conformal blocks in genus 0 for arbitrary Lie algebras, J. Math. Pures Appl. (9), Volume 98 (2012) no. 4, pp. 367-389 | DOI | MR | Zbl
[4] Factorizable sheaves and quantum groups, Lecture Notes in Mathematics, 1691, Springer-Verlag, Berlin, 1998, pp. x+287 | MR | Zbl
[5] Sur les groupes de tresses [d’après V. I. Arnolʼd], Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, Springer, Berlin, 1973, p. 21-44. Lecture Notes in Math., Vol. 317 | Numdam | MR | Zbl
[6] Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971) no. 40, pp. 5-57 | DOI | Numdam | MR | Zbl
[7] On algebraic equations satisfied by hypergeometric correlators in WZW models. II, Comm. Math. Phys., Volume 170 (1995) no. 1, pp. 219-247 http://projecteuclid.org/euclid.cmp/1104272957 | DOI | MR | Zbl
[8] Unitarity of -conformal blocks in genus zero, J. Geom. Phys., Volume 59 (2009) no. 5, pp. 654-662 | DOI | MR | Zbl
[9] The KZ system via polydifferentials, Arrangements of hyperplanes—Sapporo 2009 (Adv. Stud. Pure Math.), Volume 62, Math. Soc. Japan, Tokyo, 2012, pp. 189-231 | MR | Zbl
[10] The “Harder-Narasimhan trace” and unitarity of the KZ/Hitchin connection: genus 0, Ann. of Math. (2), Volume 169 (2009) no. 1, pp. 1-39 | DOI | MR | Zbl
[11] Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors, J. Pure Appl. Algebra, Volume 100 (1995) no. 1-3, pp. 93-102 | DOI | MR | Zbl
[12] Arrangements of hyperplanes and Lie algebra homology, Invent. Math., Volume 106 (1991) no. 1, pp. 139-194 | DOI | MR | Zbl
[13] Complex semisimple Lie algebras, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001, pp. x+74 (Translated from the French by G. A. Jones, Reprint of the 1987 edition) | DOI | MR | Zbl
[14] La formule de Verlinde, Astérisque (1996) no. 237, pp. Exp. No. 794, 3, 87-114 (Séminaire Bourbaki, Vol. 1994/95) | Numdam | MR | Zbl
[15] Vertex operators in conformal field theory on and monodromy representations of braid group, Conformal field theory and solvable lattice models (Kyoto, 1986) (Adv. Stud. Pure Math.), Volume 16, Academic Press, Boston, MA, 1988, pp. 297-372 | MR | Zbl
[16] Conformal field theory on universal family of stable curves with gauge symmetries, Integrable systems in quantum field theory and statistical mechanics (Adv. Stud. Pure Math.), Volume 19, Academic Press, Boston, MA, 1989, pp. 459-566 | MR | Zbl
[17] Conformal field theory with gauge symmetry, Fields Institute Monographs, 24, American Mathematical Society, Providence, RI; Fields Institute for Research in Mathematical Sciences, Toronto, ON, 2008, pp. viii+168 | MR | Zbl
[18] Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups, Advanced Series in Mathematical Physics, 21, World Scientific Publishing Co., Inc., River Edge, NJ, 1995, pp. x+371 | DOI | MR | Zbl
Cité par Sources :