Étant donné un origami (surface à petits carreaux) avec un groupe d’automorphismes , nous déterminons la décomposition du premier groupe d’homologie de en -submodules isotypiques. Parmi l’action du groupe affine de sur le groupe d’homologie, nous déduisons quelques conséquences pour les multiplicités des exposants de Lyapunov du cocycle de Kontsevich-Zorich. De plus, nous construisons et étudions plusieurs familles d’origamis intéressants pour illustrer nos résultats.
Given an origami (square-tiled surface) with automorphism group , we compute the decomposition of the first homology group of into isotypic -submodules. Through the action of the affine group of on the homology group, we deduce some consequences for the multiplicities of the Lyapunov exponents of the Kontsevich-Zorich cocycle. We also construct and study several families of interesting origamis illustrating our results.
Keywords: Origamis, square-tiled surfaces, automorphisms group, affine group, representations of finite groups, regular and quasi-regular origamis, Kontsevich-Zorich cocycle, Lyapunov exponents
Mot clés : origamis, surfaces à petits carreaux, groupes d’automorphismes, groupes affines, représentations des groupes finis, origamis réguliers et quasi-réguliers, cocycle de Kontsevich-Zorich, exposants de Lyapunov
Matheus, Carlos 1 ; Yoccoz, Jean-Christophe 2 ; Zmiaikou, David 3
@article{AIF_2014__64_3_1131_0, author = {Matheus, Carlos and Yoccoz, Jean-Christophe and Zmiaikou, David}, title = {Homology of origamis with symmetries}, journal = {Annales de l'Institut Fourier}, pages = {1131--1176}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {3}, year = {2014}, doi = {10.5802/aif.2876}, mrnumber = {3330166}, zbl = {06387303}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2876/} }
TY - JOUR AU - Matheus, Carlos AU - Yoccoz, Jean-Christophe AU - Zmiaikou, David TI - Homology of origamis with symmetries JO - Annales de l'Institut Fourier PY - 2014 SP - 1131 EP - 1176 VL - 64 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2876/ DO - 10.5802/aif.2876 LA - en ID - AIF_2014__64_3_1131_0 ER -
%0 Journal Article %A Matheus, Carlos %A Yoccoz, Jean-Christophe %A Zmiaikou, David %T Homology of origamis with symmetries %J Annales de l'Institut Fourier %D 2014 %P 1131-1176 %V 64 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2876/ %R 10.5802/aif.2876 %G en %F AIF_2014__64_3_1131_0
Matheus, Carlos; Yoccoz, Jean-Christophe; Zmiaikou, David. Homology of origamis with symmetries. Annales de l'Institut Fourier, Tome 64 (2014) no. 3, pp. 1131-1176. doi : 10.5802/aif.2876. https://aif.centre-mersenne.org/articles/10.5802/aif.2876/
[1] Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture, Acta Math., Volume 198 (2007) no. 1, pp. 1-56 | MR | Zbl
[2] Euler characteristics of Teichmüller curves in genus two, Geom. Topol., Volume 11 (2007), pp. 1887-2073 | MR | Zbl
[3] Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math. (2), Volume 172 (2010) no. 1, pp. 139-185 | MR | Zbl
[4] Nonvarying sums of Lyapunov exponents of Abelian differentials in low genus, Geom. Topol., Volume 16 (2012) no. 4, pp. 2427-2479 | MR | Zbl
[5] Formes bilinéaires invariantes (2004) (at http://www.normalesup.org/~cornulier/bil_inv.pdf)
[6] Diffusion for the periodic wind-tree model (arXiv:1107.1810)
[7] Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow (Prprint arXiv:1112.5872)
[8] Lyapunov spectrum of square-tiled cyclic covers, J. Mod. Dyn., Volume 5 (2011) no. 2, pp. 319-353 | MR | Zbl
[9] Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2), Volume 155 (2002) no. 1, pp. 1-103 | MR | Zbl
[10] Representation theory, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991, pp. xvi+551 (A first course, Readings in Mathematics) | MR | Zbl
[11] Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J., Volume 103 (2000) no. 2, pp. 191-213 | MR | Zbl
[12] Teichmüller curves defined by characteristic origamis, The geometry of Riemann surfaces and abelian varieties (Contemp. Math.), Volume 397, Amer. Math. Soc., Providence, RI, 2006, pp. 133-144 | MR | Zbl
[13] An extraordinary origami curve, Math. Nachr., Volume 281 (2008) no. 2, pp. 219-237 | MR | Zbl
[14] Lyapunov exponents and Hodge theory, The mathematical beauty of physics (Saclay, 1996) (Adv. Ser. Math. Phys.), Volume 24, World Sci. Publ., River Edge, NJ, 1997, pp. 318-332 | MR | Zbl
[15] Interval exchange transformations and measured foliations, Ann. of Math. (2), Volume 115 (1982) no. 1, pp. 169-200 | MR | Zbl
[16] The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis, J. Mod. Dyn., Volume 4 (2010) no. 3, pp. 453-486 | MR | Zbl
[17] Some remarks on commutators, Proc. Amer. Math. Soc., Volume 2 (1951), pp. 307-314 | MR | Zbl
[18] Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977, pp. x+170 (Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42) | MR | Zbl
[19] Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), Volume 115 (1982) no. 1, pp. 201-242 | MR | Zbl
[20] The Teichmüller geodesic flow, Ann. of Math. (2), Volume 124 (1986) no. 3, pp. 441-530 | MR | Zbl
[21] Conservative partially hyperbolic dynamics, Proceedings of the International Congress of Mathematicians. Volume III (2010), pp. 1816-1836 | MR | Zbl
[22] Interval exchange maps and translation surfaces, Homogeneous flows, moduli spaces and arithmetic (Clay Math. Proc.), Volume 10, Amer. Math. Soc., Providence, RI, 2010, pp. 1-69 (available at http://www.college-de-france.fr/media/equ_dif/UPL15305_PisaLecturesJCY2007.pdf) | MR | Zbl
[23] Weierstrass filtration on Teichmüller curves and Lyapunov exponents, J. Mod. Dyn., Volume 7 (2013) no. 2, pp. 209-237 | MR | Zbl
[24] Origamis and permutation groups (2011) (PhD thesis, at http://www.zmiaikou.com/research)
[25] Asymptotic flag of an orientable measured foliation on a surface, Geometric study of foliations (Tokyo, 1993), World Sci. Publ., River Edge, NJ, 1994, pp. 479-498 | Numdam | MR | Zbl
[26] Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents, Ann. Inst. Fourier (Grenoble), Volume 46 (1996) no. 2, pp. 325-370 | Numdam | MR | Zbl
[27] Deviation for interval exchange transformations, Ergodic Theory Dynam. Systems, Volume 17 (1997) no. 6, pp. 1477-1499 | MR | Zbl
[28] On hyperplane sections of periodic surfaces, Solitons, geometry, and topology: on the crossroad (Amer. Math. Soc. Transl. Ser. 2), Volume 179, Amer. Math. Soc., Providence, RI, 1997, pp. 173-189 | MR | Zbl
[29] How do the leaves of a closed -form wind around a surface?, Pseudoperiodic topology (Amer. Math. Soc. Transl. Ser. 2), Volume 197, Amer. Math. Soc., Providence, RI, 1999, pp. 135-178 | MR | Zbl
[30] Flat surfaces, Frontiers in number theory, physics, and geometry. I, Springer, Berlin, 2006, pp. 437-583 | MR | Zbl
Cité par Sources :