Nous établissons une borne sur le degré des générateurs pour les anneaux adjoints de surfaces et de variétés algébriques de dimension .
We describe a bound on the degree of the generators for some adjoint rings on surfaces and threefolds.
Keywords: birational geometry, minimal model program, log canonical ring
Mot clés : géométrie birationnelle, programme du modèle minimal, anneau log-canonique
Cascini, Paolo 1 ; Zhang, De-Qi 2
@article{AIF_2014__64_1_127_0, author = {Cascini, Paolo and Zhang, De-Qi}, title = {Effective finite generation for adjoint rings}, journal = {Annales de l'Institut Fourier}, pages = {127--144}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {1}, year = {2014}, doi = {10.5802/aif.2841}, mrnumber = {3330543}, zbl = {06387268}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2841/} }
TY - JOUR AU - Cascini, Paolo AU - Zhang, De-Qi TI - Effective finite generation for adjoint rings JO - Annales de l'Institut Fourier PY - 2014 SP - 127 EP - 144 VL - 64 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2841/ DO - 10.5802/aif.2841 LA - en ID - AIF_2014__64_1_127_0 ER -
%0 Journal Article %A Cascini, Paolo %A Zhang, De-Qi %T Effective finite generation for adjoint rings %J Annales de l'Institut Fourier %D 2014 %P 127-144 %V 64 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2841/ %R 10.5802/aif.2841 %G en %F AIF_2014__64_1_127_0
Cascini, Paolo; Zhang, De-Qi. Effective finite generation for adjoint rings. Annales de l'Institut Fourier, Tome 64 (2014) no. 1, pp. 127-144. doi : 10.5802/aif.2841. https://aif.centre-mersenne.org/articles/10.5802/aif.2841/
[1] The moduli -divisor of an lc-trivial fibration, Compos. Math., Volume 141 (2005) no. 2, pp. 385-403 | DOI | MR | Zbl
[2] Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR | Zbl
[3] Rationale Singularitäten komplexer Flächen, Invent. Math., Volume 4 (1967/1968), pp. 336-358 | DOI | MR | Zbl
[4] New outlook on the minimal model program, I, Duke Math. J., Volume 161 (2012) no. 12, pp. 2415-2467 | DOI | MR | Zbl
[5] Explicit birational geometry of 3-folds of general type, II, J. Differential Geom., Volume 86 (2010) no. 2, pp. 237-271 http://projecteuclid.org/getRecord?id=euclid.jdg/1299766788 | MR | Zbl
[6] Explicit birational geometry of threefolds of general type, I, Ann. Sci. Éc. Norm. Supér. (4), Volume 43 (2010) no. 3, pp. 365-394 | Numdam | MR | Zbl
[7] Factoring 3-fold flips and divisorial contractions to curves, J. Reine Angew. Math., Volume 657 (2011), pp. 173-197 | DOI | MR | Zbl
[8] New outlook on Mori theory, II, 2010 (arXiv:1005.0614v2)
[9] The canonical ring of a variety of general type, Duke Math. J., Volume 49 (1982) no. 4, pp. 1087-1113 http://projecteuclid.org/getRecord?id=euclid.dmj/1077315540 | DOI | MR | Zbl
[10] Boundedness of pluricanonical maps of varieties of general type, Invent. Math., Volume 166 (2006) no. 1, pp. 1-25 | DOI | MR | Zbl
[11] Blowing ups of -dimensional terminal singularities, Publ. Res. Inst. Math. Sci., Volume 35 (1999) no. 3, pp. 515-570 | DOI | MR | Zbl
[12] Blowing ups of 3-dimensional terminal singularities. II, Publ. Res. Inst. Math. Sci., Volume 36 (2000) no. 3, pp. 423-456 | DOI | MR | Zbl
[13] The minimal discrepancy of a -fold terminal singularity, 1993 (Appendix to [21])
[14] Subadjunction of log canonical divisors. II, Amer. J. Math., Volume 120 (1998) no. 5, pp. 893-899 http://muse.jhu.edu/journals/american_journal_of_mathematics/v120/120.5kawamata.pdf | DOI | MR | Zbl
[15] Effective base point freeness, Math. Ann., Volume 296 (1993) no. 4, pp. 595-605 | DOI | MR | Zbl
[16] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998, pp. viii+254 (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | DOI | Zbl
[17] Positivity in Algebraic Geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, 48, Springer-Verlag, Berlin, 2004 | MR | Zbl
[18] On -dimensional terminal singularities, Nagoya Math. J., Volume 98 (1985), pp. 43-66 http://projecteuclid.org/getRecord?id=euclid.nmj/1118787793 | MR | Zbl
[19] Towards the second main theorem on complements, J. Algebraic Geom., Volume 18 (2009) no. 1, pp. 151-199 | DOI | MR | Zbl
[20] Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) (Proc. Sympos. Pure Math.), Volume 46, Amer. Math. Soc., Providence, RI, 1987, pp. 345-414 | MR | Zbl
[21] Finite generation of canonical ring by analytic method, Sci. China Ser. A, Volume 51 (2008) no. 4, pp. 481-502 | DOI | MR | Zbl
[22] Pluricanonical systems on algebraic varieties of general type, Invent. Math., Volume 165 (2006) no. 3, pp. 551-587 | DOI | MR | Zbl
[23] On Effective log Iitaka fibration for 3-folds and 4-folds, Algebra Number Theory, Volume 3 (2009) no. 6, pp. 697-710 | DOI | MR | Zbl
[24] Effective Iitaka fibrations, J. Algebraic Geom., Volume 18 (2009) no. 4, pp. 711-730 | DOI | MR | Zbl
Cité par Sources :