We give necessary and sufficient conditions for an orthogonal group defined over a global field of characteristic to contain a maximal torus of a given type.
Nous donnons des conditions nécessaires et suffisantes pour qu’un groupe orthogonal défini sur un corps global de caractéristique contienne un tore maximal d’un type donné.
Accepted:
DOI: 10.5802/aif.2840
Classification: 11E57, 11E12, 20G30
Keywords: Orthogonal groups, maximal tori
@article{AIF_2014__64_1_113_0, author = {Bayer-Fluckiger, Eva}, title = {Embeddings of maximal tori in orthogonal groups}, journal = {Annales de l'Institut Fourier}, pages = {113--125}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {1}, year = {2014}, doi = {10.5802/aif.2840}, zbl = {06387267}, mrnumber = {3330542}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2840/} }
TY - JOUR TI - Embeddings of maximal tori in orthogonal groups JO - Annales de l'Institut Fourier PY - 2014 DA - 2014/// SP - 113 EP - 125 VL - 64 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2840/ UR - https://zbmath.org/?q=an%3A06387267 UR - https://www.ams.org/mathscinet-getitem?mr=3330542 UR - https://doi.org/10.5802/aif.2840 DO - 10.5802/aif.2840 LA - en ID - AIF_2014__64_1_113_0 ER -
Bayer-Fluckiger, Eva. Embeddings of maximal tori in orthogonal groups. Annales de l'Institut Fourier, Volume 64 (2014) no. 1, pp. 113-125. doi : 10.5802/aif.2840. https://aif.centre-mersenne.org/articles/10.5802/aif.2840/
[1] Orthogonal groups containing a given maximal torus, J. Algebra, Tome 266 (2003) no. 1, pp. 87-101 | Article | MR: 1994530 | Zbl: 1079.11023
[2] Characterization of special points of orthogonal symmetric spaces, J. Algebra, Tome 372 (2012), pp. 397-419 | Article | MR: 2990017 | Zbl: pre06180116
[3] Weakly commensurable S-arithmetic subgroups in almost simple algebraic groups of types B and C (Algebra and Number Theory, to appear) | Zbl: 1285.20045
[4] Type des tores maximaux des groupes semi-simples, J. Ramanujan Math. Soc., Tome 19 (2004) no. 3, pp. 213-230 | MR: 2139505 | Zbl: 1193.20057
[5] Embedding functors and their arithmetic properties (Comment. Math. Helv, to appear)
[6] Complex Multiplication (http://www.jmilne.org/math/CourseNotes/cm)
[7] On isometries of inner product spaces, Invent. Math., Tome 8 (1969), pp. 83-97 | Article | MR: 249519 | Zbl: 0177.05204
[8] Introduction to quadratic forms, Classics in Mathematics, Springer-Verlag, Berlin, 2000, xiv+342 pages (Reprint of the 1973 edition) | MR: 1754311 | Zbl: 1034.11003
[9] Local-global principles for embedding of fields with involution into simple algebras with involution, Comment. Math. Helv., Tome 85 (2010) no. 3, pp. 583-645 | Article | MR: 2653693 | Zbl: 1223.11047
[10] Quadratic and Hermitian forms, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 270, Springer-Verlag, Berlin, 1985, x+421 pages | MR: 770063 | Zbl: 0584.10010
Cited by Sources: