We give necessary and sufficient conditions for an orthogonal group defined over a global field of characteristic to contain a maximal torus of a given type.
Nous donnons des conditions nécessaires et suffisantes pour qu’un groupe orthogonal défini sur un corps global de caractéristique contienne un tore maximal d’un type donné.
Keywords: Orthogonal groups, maximal tori
Mot clés : groupes orthogonaux, tores maximaux
Bayer-Fluckiger, Eva 1
@article{AIF_2014__64_1_113_0, author = {Bayer-Fluckiger, Eva}, title = {Embeddings of maximal tori in orthogonal groups}, journal = {Annales de l'Institut Fourier}, pages = {113--125}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {64}, number = {1}, year = {2014}, doi = {10.5802/aif.2840}, mrnumber = {3330542}, zbl = {06387267}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2840/} }
TY - JOUR AU - Bayer-Fluckiger, Eva TI - Embeddings of maximal tori in orthogonal groups JO - Annales de l'Institut Fourier PY - 2014 SP - 113 EP - 125 VL - 64 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2840/ DO - 10.5802/aif.2840 LA - en ID - AIF_2014__64_1_113_0 ER -
%0 Journal Article %A Bayer-Fluckiger, Eva %T Embeddings of maximal tori in orthogonal groups %J Annales de l'Institut Fourier %D 2014 %P 113-125 %V 64 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2840/ %R 10.5802/aif.2840 %G en %F AIF_2014__64_1_113_0
Bayer-Fluckiger, Eva. Embeddings of maximal tori in orthogonal groups. Annales de l'Institut Fourier, Volume 64 (2014) no. 1, pp. 113-125. doi : 10.5802/aif.2840. https://aif.centre-mersenne.org/articles/10.5802/aif.2840/
[1] Orthogonal groups containing a given maximal torus, J. Algebra, Volume 266 (2003) no. 1, pp. 87-101 | DOI | MR | Zbl
[2] Characterization of special points of orthogonal symmetric spaces, J. Algebra, Volume 372 (2012), pp. 397-419 | DOI | MR
[3] Weakly commensurable S-arithmetic subgroups in almost simple algebraic groups of types B and C (Algebra and Number Theory, to appear) | Zbl
[4] Type des tores maximaux des groupes semi-simples, J. Ramanujan Math. Soc., Volume 19 (2004) no. 3, pp. 213-230 | MR | Zbl
[5] Embedding functors and their arithmetic properties (Comment. Math. Helv, to appear)
[6] Complex Multiplication (http://www.jmilne.org/math/CourseNotes/cm)
[7] On isometries of inner product spaces, Invent. Math., Volume 8 (1969), pp. 83-97 | DOI | MR | Zbl
[8] Introduction to quadratic forms, Classics in Mathematics, Springer-Verlag, Berlin, 2000, pp. xiv+342 (Reprint of the 1973 edition) | MR | Zbl
[9] Local-global principles for embedding of fields with involution into simple algebras with involution, Comment. Math. Helv., Volume 85 (2010) no. 3, pp. 583-645 | DOI | MR | Zbl
[10] Quadratic and Hermitian forms, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 270, Springer-Verlag, Berlin, 1985, pp. x+421 | MR | Zbl
Cited by Sources: