E. Feigin a introduit la contraction d’une algèbre de Lie semi-simple dans arXiv :1007.0646 et arXiv :1101.1898. Nous démontrons que ces algèbres de Lie non-réductives conservent quelque unes des propriétés de . En particulier, les algèbres des invariants des représentations adjointe et respectivement coadjointe de sont libres, et l’algèbre enveloppante de est un module libre sur son centre.
Recently, E.Feigin introduced a very interesting contraction of a semisimple Lie algebra (see arXiv:1007.0646 and arXiv:1101.1898). We prove that these non-reductive Lie algebras retain good invariant-theoretic properties of . For instance, the algebras of invariants of both adjoint and coadjoint representations of are free, and also the enveloping algebra of is a free module over its centre.
Keywords: Inönü-Wigner contraction, coadjoint representation, algebra of invariants, orbit
Mot clés : contraction de Inönü-Wigner, représentation coadjointe, algebre des invariants, orbite
Panyushev, Dmitri I. 1 ; Yakimova, Oksana S. 2
@article{AIF_2012__62_6_2053_0, author = {Panyushev, Dmitri I. and Yakimova, Oksana S.}, title = {A remarkable contraction of semisimple {Lie} algebras}, journal = {Annales de l'Institut Fourier}, pages = {2053--2068}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {6}, year = {2012}, doi = {10.5802/aif.2742}, mrnumber = {3060751}, zbl = {1266.13003}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2742/} }
TY - JOUR AU - Panyushev, Dmitri I. AU - Yakimova, Oksana S. TI - A remarkable contraction of semisimple Lie algebras JO - Annales de l'Institut Fourier PY - 2012 SP - 2053 EP - 2068 VL - 62 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2742/ DO - 10.5802/aif.2742 LA - en ID - AIF_2012__62_6_2053_0 ER -
%0 Journal Article %A Panyushev, Dmitri I. %A Yakimova, Oksana S. %T A remarkable contraction of semisimple Lie algebras %J Annales de l'Institut Fourier %D 2012 %P 2053-2068 %V 62 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2742/ %R 10.5802/aif.2742 %G en %F AIF_2012__62_6_2053_0
Panyushev, Dmitri I.; Yakimova, Oksana S. A remarkable contraction of semisimple Lie algebras. Annales de l'Institut Fourier, Tome 62 (2012) no. 6, pp. 2053-2068. doi : 10.5802/aif.2742. https://aif.centre-mersenne.org/articles/10.5802/aif.2742/
[1] Invariants et covariants des groupes algébriques réductifs (2000) (dans : “Théorie des invariants et géometrie des variétés quotients, Travaux en cours, t. 61, 83–168, Paris: Hermann) | Zbl
[2] -degeneration of flag varieties, Selecta Math., New Series, to appear | Zbl
[3] Degenerate flag varieties and the median Genocchi numbers, Math. Research Letters, Volume 18 (2011) no. 6, pp. 1163-1178 | MR | Zbl
[4] PBW filtration and bases for irreducible modules in type , Transform. Groups, Volume 16 (2011) no. 1, pp. 71-89 | MR | Zbl
[5] Sur le centre de l’algèbre enveloppante d’une algèbre de Takiff, Ann. Math. Blaise Pascal, Volume 1 (1994) no. 2, p. 15-31 (1995) | EuDML | Numdam | MR | Zbl
[6] Geometry of absolutely admissible representations, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 373-452 | MR | Zbl
[7] On semi-invariants and index for biparabolic (seaweed) algebras. II, J. Algebra, Volume 312 (2007) no. 1, pp. 158-193 | MR | Zbl
[8] Lie group representations on polynomial rings, Amer. J. Math., Volume 85 (1963), pp. 327-404 | MR | Zbl
[9] On symmetric invariants of centralisers in reductive Lie algebras, J. Algebra, Volume 313 (2007) no. 1, pp. 343-391 | MR | Zbl
[10] On the coadjoint representation of -contractions of reductive Lie algebras, Adv. Math., Volume 213 (2007) no. 1, pp. 380-404 | MR | Zbl
[11] Semi-direct products of Lie algebras and their invariants, Publ. Res. Inst. Math. Sci., Volume 43 (2007) no. 4, pp. 1199-1257 | MR | Zbl
[12] Champs de vecteurs invariants sur une algèbre de Lie réductive complexe, J. Math. Soc. Japan, Volume 40 (1988) no. 4, pp. 615-628 | MR | Zbl
[13] Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math. (1980) no. 51, pp. 37-135 | Numdam | MR | Zbl
[14] Conjugacy classes in algebraic groups, Group theory, Beijing 1984 (Lecture Notes in Math.), Volume 1185, Springer, Berlin, 1986, pp. 175-209 | MR | Zbl
[15] Gruppy i algebry Li - 3, Sovrem. probl. matematiki. Fundam. napravl., t. 41, Moskva: VINITI, Russian, 1990 English translation: “Lie Groups and Lie Algebras" III (Encyclopaedia Math. Sci., vol. 41, Berlin: Springer 1994 | Zbl
[16] Covariants de groupes algébriques réductifs, Université de Genève (1974) (Thèse n° 1671)
[17] One-parameter contractions of Lie-Poisson brackets, J. Europ. Math. Soc., to appear; arXiv:1202.3009
Cité par Sources :