Nous démontrons que la suite spectrale de Hodge-De Rham d’un champ d’Artin propre modéré en caractéristique (d’après Abramovich, Olsson et Vistoli) qui se relève mod dégénère. Nous étendons ce résultat à des schémas quotients d’un schéma lisse par un schéma en groupes linéaires réductifs.
We prove that the Hodge-de Rham spectral sequence for smooth proper tame Artin stacks in characteristic (as defined by Abramovich, Olsson, and Vistoli) which lift mod degenerates. We push the result to the coarse spaces of such stacks, thereby obtaining a degeneracy result for schemes which are étale locally the quotient of a smooth scheme by a finite linearly reductive group scheme.
Keywords: de Rham, Hodge, tame stack, linearly reductive
Mot clés : De Rham, Hodge, champs modéré, linéaire réductif
Satriano, Matthew 1
@article{AIF_2012__62_6_2013_0, author = {Satriano, Matthew}, title = {de {Rham} {Theory} for {Tame} {Stacks} and {Schemes} with {Linearly} {Reductive} {Singularities}}, journal = {Annales de l'Institut Fourier}, pages = {2013--2051}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {6}, year = {2012}, doi = {10.5802/aif.2741}, mrnumber = {3060750}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2741/} }
TY - JOUR AU - Satriano, Matthew TI - de Rham Theory for Tame Stacks and Schemes with Linearly Reductive Singularities JO - Annales de l'Institut Fourier PY - 2012 SP - 2013 EP - 2051 VL - 62 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2741/ DO - 10.5802/aif.2741 LA - en ID - AIF_2012__62_6_2013_0 ER -
%0 Journal Article %A Satriano, Matthew %T de Rham Theory for Tame Stacks and Schemes with Linearly Reductive Singularities %J Annales de l'Institut Fourier %D 2012 %P 2013-2051 %V 62 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2741/ %R 10.5802/aif.2741 %G en %F AIF_2012__62_6_2013_0
Satriano, Matthew. de Rham Theory for Tame Stacks and Schemes with Linearly Reductive Singularities. Annales de l'Institut Fourier, Tome 62 (2012) no. 6, pp. 2013-2051. doi : 10.5802/aif.2741. https://aif.centre-mersenne.org/articles/10.5802/aif.2741/
[1] Tame stacks in positive characteristic, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 4, pp. 1057-1091 | Numdam | MR | Zbl
[2] Compactifying the space of stable maps, J. Amer. Math. Soc., Volume 15 (2002) no. 1, p. 27-75 (electronic) | DOI | MR | Zbl
[3] Cohomology of stacks, Intersection theory and moduli (ICTP Lect. Notes, XIX), Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, p. 249-294 (electronic) | MR | Zbl
[4] Cohomological descent, 2009 (http://math.stanford.edu/~conrad/papers/cohdescent.pdf)
[5] Relèvements modulo et décomposition du complexe de de Rham, Invent. Math., Volume 89 (1987) no. 2, pp. 247-270 | DOI | MR | Zbl
[6] -adic Hodge theory, J. Amer. Math. Soc., Volume 1 (1988) no. 1, pp. 255-299 | DOI | MR | Zbl
[7] Smooth toric DM stacks, 2009 (arXiv:0708.1254v2)
[8] Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math., Volume 13 (1974), pp. 115-175 | MR | Zbl
[9] Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol. 239, Springer-Verlag, Berlin, 1971 | MR | Zbl
[10] Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. (1970) no. 39, pp. 175-232 | Numdam | MR | Zbl
[11] Quotients by groupoids, Ann. of Math. (2), Volume 145 (1997) no. 1, pp. 193-213 | DOI | MR | Zbl
[12] Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 39, Springer-Verlag, Berlin, 2000 | MR | Zbl
[13] Kawamata-Viehweg vanishing as Kodaira vanishing for stacks, Math. Res. Lett., Volume 12 (2005) no. 2-3, pp. 207-217 | MR | Zbl
[14] Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 34, Springer-Verlag, Berlin, 1994 | MR | Zbl
[15] -stacks and restriction of scalars, Duke Math. J., Volume 134 (2006) no. 1, pp. 139-164 | DOI | MR | Zbl
[16] Sheaves on Artin stacks, J. Reine Angew. Math., Volume 603 (2007), pp. 55-112 | DOI | MR | Zbl
[17] A generalization of the Chevalley-Shephard-Todd theorem to the case of linearly reductive group schemes, 2009 (arXiv:0911.2058v1)
[18] Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 525-563 | MR | Zbl
[19] K-théorie et cohomologie des champs algébriques: Théorèmes de Riemann-Roch, D-modules et théorèmes GAGA, 1999 (arXiv:math/9908097v2)
[20] Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math., Volume 97 (1989) no. 3, pp. 613-670 | DOI | MR | Zbl
Cité par Sources :