Dans ce papier nous construisons, pour chaque variété de dimension trois close orientable et asphérique , une classe d’homologie de dimension deux dans dont la norme permet avec le volume simplicial de de caractériser les applications de degré non-nul de dans qui sont homotopes à un revêtement. Comme conséquence, nous donnons un critère d’homéomorphisme pour les applications de degré un en terme d’isométries entre les groupes de cohomologie bornée de et .
In this paper we construct, for each aspherical oriented -manifold , a -dimensional class in the -homology of whose norm combined with the Gromov simplicial volume of gives a characterization of those nonzero degree maps from to which are homotopic to a covering map. As an application we characterize those degree one maps which are homotopic to a homeomorphism in term of isometries between the bounded cohomology groups of and .
Keywords: Aspherical $3$-manifolds, bounded cohomology, $l_1$-homology, non-zero degree maps, topological rigidity.
Mot clés : variétés asphériques de dimension trois, cohomologie bornée, homologie $l_1$, applications de degré non-nul, rigidité topologique.
Derbez, Pierre 1
@article{AIF_2012__62_1_393_0, author = {Derbez, Pierre}, title = {Local rigidity of aspherical three-manifolds}, journal = {Annales de l'Institut Fourier}, pages = {393--416}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {1}, year = {2012}, doi = {10.5802/aif.2708}, mrnumber = {2986274}, zbl = {1255.57016}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2708/} }
TY - JOUR AU - Derbez, Pierre TI - Local rigidity of aspherical three-manifolds JO - Annales de l'Institut Fourier PY - 2012 SP - 393 EP - 416 VL - 62 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2708/ DO - 10.5802/aif.2708 LA - en ID - AIF_2012__62_1_393_0 ER -
%0 Journal Article %A Derbez, Pierre %T Local rigidity of aspherical three-manifolds %J Annales de l'Institut Fourier %D 2012 %P 393-416 %V 62 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2708/ %R 10.5802/aif.2708 %G en %F AIF_2012__62_1_393_0
Derbez, Pierre. Local rigidity of aspherical three-manifolds. Annales de l'Institut Fourier, Tome 62 (2012) no. 1, pp. 393-416. doi : 10.5802/aif.2708. https://aif.centre-mersenne.org/articles/10.5802/aif.2708/
[1] Lower bounds on volumes of hyperbolic Haken 3-manifolds arXiv:math/9906182 (1999)
[2] Surfaces et cohomologie bornée, Ergodic Theory Dyn. Syst., Volume 92 (1988) no. 3, pp. 509-526 | MR | Zbl
[3] Non-zero degree maps and surface bundles over , J. Differential Geom., Volume 43 (1996) no. 4, pp. 789-806 | MR | Zbl
[4] The Godbillon-Vey invariant of a transversely homogeneous foliation, Trans. Amer. Math. Soc., Volume 286 (1984) no. 2, pp. 651-664 | DOI | MR | Zbl
[5] Volumes in Seifert space, Duke Math. J., Volume 51 (1984) no. 3, pp. 529-545 | DOI | MR | Zbl
[6] Topological rigidity and Gromov simplicial volume, Comment. Math. Helv., Volume 85 (2010) no. 1, pp. 1-37 | DOI | MR
[7] Finiteness of mapping degrees and -volume on graph manifolds, Algebraic and Geometric Topology, Volume 9 (2009), pp. 1727-1749 | DOI | MR
[8] Bounded classes in the cohomology of manifolds, Dedicated to John Stallings on the occasion of his 65th birthday. Geom. Dedicata, Volume 92 (2002), pp. 73-85 | MR
[9] Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (1982) no. 56, pp. 5-99 | Numdam | MR | Zbl
[10] -manifolds, Ann. of Math. Studies, 86, Princeton Univ. Press, 1976 | MR | Zbl
[11] Seifert fibered space in 3-manifolds, Ann. of Math. Studies, 21, Mem. Amer. Math. Soc., 1979 | MR | Zbl
[12] Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes in Mathematics, 761, Springer, Berlin, 1979 | MR | Zbl
[13] Topological rigidity for non-aspherical manifolds (arXiv:math.KT/0509238, to appear in Quarterly Journal of Pure and Applied mathematics)
[14] -manifolds with(out) metrics of nonpositive curvature, Invent. Math., Volume 122 (1995) no. 2, pp. 277-289 | DOI | MR | Zbl
[15] Relative Euler number and finite covers of graph manifolds, Geometric topology (Athens, GA, 1993) (AMS/IP Stud. Adv. Math, 2.1.), Amer. Math. Soc., Providence, RI, 1997, pp. 80-103 | MR | Zbl
[16] Bounded cohomology of certain groups of homeomorphisms, Proc. Amer. Math. Soc., Volume 94 (1985) no. 3, pp. 359-544 | DOI | MR | Zbl
[17] -manifolds fibering over , Proc. Am. Math. Soc., Volume 58 (1979), pp. 353-356 | DOI | MR | Zbl
[18] A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Am. Math. Soc., Volume 268 (1981), pp. 299-343 | DOI | MR | Zbl
[19] Maps between Seifert fibered spaces of infinite , Pacific J. Math., Volume 160 (1993), pp. 143-154 | MR | Zbl
[20] A rigidity theorem for Haken manifolds, Math. Proc. Cambridge Philos. Soc., Volume 118 (1995) no. 1, pp. 141-160 | DOI | MR | Zbl
[21] Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.), Volume 6 (1982) no. 3, pp. 357-381 | DOI | MR | Zbl
[22] A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc., Volume 59 (1986) no. 339, p. i-vi and 99–130 | MR | Zbl
[23] The existence of maps of nonzero degree between aspherical 3-manifolds, Math. Z., Volume 208 (1991) no. 1, pp. 147-160 | DOI | MR | Zbl
[24] The -injectivity of self-maps of nonzero degree on -manifolds, Math. Ann., Volume 297 (1993) no. 1, pp. 171-189 | DOI | MR | Zbl
[25] Any -manifold -dominates at most finitely many geometric -manifolds, Math. Ann., Volume 322 (2002) no. 3, pp. 525-535 | DOI | MR
Cité par Sources :