Nous démontrons la surjectivité de l’opérateur de Siegel pour des formes modulaires pour certains groupes de congruence de et de poids 4, où les techniques standards (séries de Poincaré ou séries de Klingen-Eisenstein) ne marchent pas. Nous utilisons des séries thêta et le problème de base pour plusieurs genres.
We show the surjectivity of the (global) Siegel -operator for modular forms for certain congruence subgroups of and weight , where the standard techniques (Poincaré series or Klingen-Eisenstein series) are no longer available. Our main tools are theta series and genus versions of basis problems.
Keywords: Siegel modular form, $\Phi $-operator, Theta series
Mot clés : formes modulaires de Siegel, l’opérateur $\Phi $, séries de thêta
Böcherer, Siegfried 1 ; Ibukiyama, Tomoyoshi 2
@article{AIF_2012__62_1_121_0, author = {B\"ocherer, Siegfried and Ibukiyama, Tomoyoshi}, title = {Surjectivity of {Siegel} $\Phi $-operator for square free level and small weight}, journal = {Annales de l'Institut Fourier}, pages = {121--144}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {1}, year = {2012}, doi = {10.5802/aif.2702}, mrnumber = {2986268}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2702/} }
TY - JOUR AU - Böcherer, Siegfried AU - Ibukiyama, Tomoyoshi TI - Surjectivity of Siegel $\Phi $-operator for square free level and small weight JO - Annales de l'Institut Fourier PY - 2012 SP - 121 EP - 144 VL - 62 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2702/ DO - 10.5802/aif.2702 LA - en ID - AIF_2012__62_1_121_0 ER -
%0 Journal Article %A Böcherer, Siegfried %A Ibukiyama, Tomoyoshi %T Surjectivity of Siegel $\Phi $-operator for square free level and small weight %J Annales de l'Institut Fourier %D 2012 %P 121-144 %V 62 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2702/ %R 10.5802/aif.2702 %G en %F AIF_2012__62_1_121_0
Böcherer, Siegfried; Ibukiyama, Tomoyoshi. Surjectivity of Siegel $\Phi $-operator for square free level and small weight. Annales de l'Institut Fourier, Tome 62 (2012) no. 1, pp. 121-144. doi : 10.5802/aif.2702. https://aif.centre-mersenne.org/articles/10.5802/aif.2702/
[1] Vector-valued Siegel’s modular forms of degree two and the associated Andrianov -functions, Manuscripta Math., Volume 44 (1983) no. 1-3, pp. 155-185 | DOI | MR | Zbl
[2] On Eisenstein series of degree two for squarefree levels and the genus version of the basis problem. I, Automorphic forms and zeta functions, World Sci. Publ., Hackensack, NJ, 2006, pp. 43-70 (Proceedings of the conference in memory of T.Arakawa, Ed. S. Böcherer, T. Ibukiyama, M. Kaneko, F. Sato) | MR
[3] The genus version of the basis problem II: The case of oldforms (2009) (Preprint)
[4] On the global Gross-Prasad conjecture for Yoshida liftings, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 105-130 | MR
[5] Linear independence of local densities of quadratic forms and its application to the theory of Siegel modular forms, Quadratic forms—algebra, arithmetic, and geometry (Contemp. Math.), Volume 493, Amer. Math. Soc., Providence, RI, 2009, pp. 51-82 | MR
[6] Siegel modular forms and theta series attached to quaternion algebras, Nagoya Math. J., Volume 121 (1991), pp. 35-96 | MR | Zbl
[7] Pullbacks of Eisenstein series; applications, Automorphic forms of several variables (Katata, 1983) (Progr. Math.), Volume 46, Birkhäuser Boston, Boston, MA, 1984, pp. 114-137 | MR | Zbl
[8] Integral representations of Eisenstein series and -functions, Number theory, trace formulas and discrete groups (Oslo, 1987), Academic Press, Boston, MA, 1989, pp. 241-264 | MR | Zbl
[9] On some alternating sum of dimensions of Siegel cusp forms of general degree and cusp configurations, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 40 (1993) no. 2, pp. 245-283 | MR | Zbl
[10] Siegel modular forms of small weight and the Witt operator, Quadratic forms—algebra, arithmetic, and geometry (Contemp. Math.), Volume 493, Amer. Math. Soc., Providence, RI, 2009, pp. 189-209 | MR | Zbl
[11] Genus theta series, Hecke operators and the basis problem for Eisenstein series, Automorphic forms and zeta functions, World Sci. Publ., Hackensack, NJ, 2006, pp. 234-261 (Proceedings of the conference in memory of T.Arakawa. Ed. S. Böcherer, T. Ibukiyama, M. Kaneko, F. Sato) | MR | Zbl
[12] Verschwindungssätze für Hermitesche sowie Siegelsche Modulformen zu sowie , Saarbrücken (2004) (Ph. D. Thesis)
[13] Modular forms, Springer-Verlag, Berlin, 1989 (Translated from the Japanese by Yoshitaka Maeda) | MR | Zbl
[14] Dimensions of cusp forms for in degree two and small weights, Abh. Math. Sem. Univ. Hamburg, Volume 77 (2007), pp. 59-80 | DOI | MR | Zbl
[15] Compactification de espaces quotients de Siegel II, Séminaire Cartan, E. N. S., 1957/58, pp. 1-10 (Exposé 13) | EuDML
[16] L’opérateur , Séminaire Cartan, E. N. S., 1957/58, pp. 1-18 (Exposé 14) | EuDML
[17] Surjectivité globale de opérateur , Séminaire Cartan, E. N. S., 1957/58, pp. 1-17 (Exposé 16) | EuDML
[18] Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971 (Kanô Memorial Lectures, No. 1) | MR | Zbl
[19] Über die analytische Theorie der quadratischen Formen, Ann. of Math. (2), Volume 36 (1935) no. 3, pp. 527-606 | DOI | MR | Zbl
[20] Engendrement par des séries thêta de certains espaces de formes modulaires, Invent. Math., Volume 50 (1978/79) no. 2, pp. 135-168 | DOI | EuDML | MR | Zbl
Cité par Sources :