In this note we show that, for any log-canonical pair , is -effective if its Chern class contains an effective -divisor. Then, we derive some direct corollaries.
Dans cette note nous montrons que le système linéaire adjoint associé à une paire log-canonique est non-vide dés que la classe de Chern de ce système contient un diviseur effectif dont les coefficients sont rationnels. Nous en déduisons quelques corollaires immédiats.
Keywords: Log-canonical pairs, adjoint systems, ramified coverings
Mot clés : paires log-canoniques, systèmes adjoints, recouvrement ramifié
@article{AIF_2012__62_1_107_0, author = {Campana, Fr\'ed\'eric and Koziarz, Vincent and P\u{a}un, Mihai}, title = {Numerical character of the effectivity of adjoint line bundles}, journal = {Annales de l'Institut Fourier}, pages = {107--119}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {1}, year = {2012}, doi = {10.5802/aif.2701}, mrnumber = {2986267}, zbl = {1250.14009}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2701/} }
TY - JOUR AU - Campana, Frédéric AU - Koziarz, Vincent AU - Păun, Mihai TI - Numerical character of the effectivity of adjoint line bundles JO - Annales de l'Institut Fourier PY - 2012 SP - 107 EP - 119 VL - 62 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2701/ DO - 10.5802/aif.2701 LA - en ID - AIF_2012__62_1_107_0 ER -
%0 Journal Article %A Campana, Frédéric %A Koziarz, Vincent %A Păun, Mihai %T Numerical character of the effectivity of adjoint line bundles %J Annales de l'Institut Fourier %D 2012 %P 107-119 %V 62 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2701/ %R 10.5802/aif.2701 %G en %F AIF_2012__62_1_107_0
Campana, Frédéric; Koziarz, Vincent; Păun, Mihai. Numerical character of the effectivity of adjoint line bundles. Annales de l'Institut Fourier, Volume 62 (2012) no. 1, pp. 107-119. doi : 10.5802/aif.2701. https://aif.centre-mersenne.org/articles/10.5802/aif.2701/
[1] Higgs line bundles, Green-Lazarsfeld sets, and maps of Kähler manifolds to curves, Bull. Amer. Math. Soc., Volume 26 (1992) no. 2, pp. 310-314 | DOI | MR | Zbl
[2] Geometry of cohomology support loci for local systems. I, J. Algebraic Geom., Volume 6 (1997) no. 3, pp. 563-597 | MR | Zbl
[3] Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR
[4] Unitary local systems, multiplier ideals, and polynomial periodicity of Hodge numbers, Adv. Math., Volume 221 (2009) no. 1, pp. 217-250 | DOI | MR
[5] Geometric stability of the cotangent bundle and the universal cover of a projective manifold (arXiv:math/0405093, to appear in Bull. Soc. Math. France) | Numdam | MR
[6] On the irregularity of the image of the Iitaka fibration, Comm. in Algebra, Volume 32 (2004) no. 1, pp. 203-215 | DOI | MR
[7] Logarithmic de Rham complexes and vanishing theorems, Invent. Math., Volume 86 (1986) no. 1, pp. 161-194 | DOI | MR | Zbl
[8] On Kawamata’s theorem (arXiv:0910.1156)
[9] An elementary semi-ampleness result for log-canonical divisors (arXiv:1003,1388)
[10] Abundance theorem for numerically trivial log canonical divisors of semi-log canonical pairs (arXiv:1005.2796)
[11] On the abundance theorem in the case (arXiv:1002.2682)
[12] Pluricanonical systems on minimal algebraic varieties, Invent. Math., Volume 79 (1985) no. 3, pp. 567-588 | DOI | MR | Zbl
[13] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998 (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | DOI | MR | Zbl
[14] Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, Tokyo, 2004 | MR
[15] Relative critical exponents, non-vanishing and metrics with minimal singularities (arXiv:0807.3109)
[16] A nonvanishing theorem, Izv. Akad. Nauk SSSR Ser. Mat., Volume 49 (1985) no. 3, pp. 635-651 | MR | Zbl
[17] Subspaces of moduli spaces of rank one local systems, Ann. Sci. E.N.S. (4), Volume 26 (1993) no. 3, pp. 361-401 | Numdam | MR | Zbl
Cited by Sources: