Soient et des surfaces de Riemann compactes de genre au moins 3, et et des groupes complexes réductifs non abéliens. Si une composante de l’espace des modules de –fibrés principaux semi-stables sur est isomorphe à une composante , alors est isomorphe à .
Let and be compact Riemann surfaces of genus , and let and be nonabelian reductive complex groups. If one component of the coarse moduli space for semistable principal –bundles over is isomorphic to another component , then is isomorphic to .
Keywords: Principal bundle, moduli space, Torelli theorem
Mot clés : Fibré principal, espace des modules, théorème de Torelli
Biswas, Indranil 1 ; Hoffmann, Norbert 2
@article{AIF_2012__62_1_87_0, author = {Biswas, Indranil and Hoffmann, Norbert}, title = {A {Torelli} theorem for moduli spaces of principal bundles over a curve}, journal = {Annales de l'Institut Fourier}, pages = {87--106}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {1}, year = {2012}, doi = {10.5802/aif.2700}, mrnumber = {2986266}, zbl = {1268.14010}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2700/} }
TY - JOUR AU - Biswas, Indranil AU - Hoffmann, Norbert TI - A Torelli theorem for moduli spaces of principal bundles over a curve JO - Annales de l'Institut Fourier PY - 2012 SP - 87 EP - 106 VL - 62 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2700/ DO - 10.5802/aif.2700 LA - en ID - AIF_2012__62_1_87_0 ER -
%0 Journal Article %A Biswas, Indranil %A Hoffmann, Norbert %T A Torelli theorem for moduli spaces of principal bundles over a curve %J Annales de l'Institut Fourier %D 2012 %P 87-106 %V 62 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2700/ %R 10.5802/aif.2700 %G en %F AIF_2012__62_1_87_0
Biswas, Indranil; Hoffmann, Norbert. A Torelli theorem for moduli spaces of principal bundles over a curve. Annales de l'Institut Fourier, Tome 62 (2012) no. 1, pp. 87-106. doi : 10.5802/aif.2700. https://aif.centre-mersenne.org/articles/10.5802/aif.2700/
[1] Reduction of cocycles with hyperbolic targets, Ergodic Theory Dyn. Syst., Volume 16 (1996), pp. 1111-1145 | DOI | MR | Zbl
[2] Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math., Volume 97 (1989), pp. 53-94 | DOI | EuDML | MR | Zbl
[3] Moduli space of principal sheaves over projective varieties, Ann. of Math., Volume 161 (2005), pp. 1037-1092 | DOI | MR | Zbl
[4] Linear algebraic groups, Graduate Texts in Mathematics, 21, Springer-Verlag, New York - Heidelberg - Berlin, 1975 | MR | Zbl
[5] Hecke curves and Hitchin discriminant, Ann. Sci. École Norm. Sup., Volume 37 (2004), pp. 801-817 | EuDML | Numdam | MR | Zbl
[6] The automorphism group of the moduli space of semi stable vector bundles, Math. Ann., Volume 302 (1995), pp. 225-268 | DOI | EuDML | MR | Zbl
[7] Picard group of the moduli spaces of –bundles, Math. Ann., Volume 308 (1997), pp. 155-173 | DOI | MR | Zbl
[8] Slices étalés, Mém. Soc. Math. Fr., Volume 33 (1973), pp. 81-105 | EuDML | Numdam | MR | Zbl
[9] Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 34, Springer-Verlag, Berlin, 1965 | MR | Zbl
[10] Periods of a moduli space of bundles on curves, Amer. Jour. Math., Volume 90 (1968), pp. 1200-1208 | DOI | MR | Zbl
[11] Moduli of vector bundles on a compact Riemann surface, Ann. of Math., Volume 89 (1969), pp. 14-51 | DOI | MR | Zbl
[12] Deformations of the moduli space of vector bundles over an algebraic curve, Ann. of Math., Volume 101 (1975), pp. 391-417 | DOI | MR | Zbl
[13] Comparison of generalized theta functions, Duke Math. J., Volume 76 (1994), pp. 509-539 | DOI | MR | Zbl
[14] Stable principal bundles on a compact Riemann surface, Math. Ann., Volume 213 (1975), pp. 129-152 | DOI | MR | Zbl
[15] Moduli for principal bundles over algebraic curves, Proc. Indian Acad. Sci. (Math. Sci.), Volume 106 (1996), p. 301-328 and 421–449 | DOI | Zbl
[16] Singular principal bundles over higher–dimensional manifolds and their moduli spaces, Int. Math. Res. Not. (2002), pp. 1183-1209 | DOI | MR
[17] On the fundamental group of a unirational variety, Jour. London Math. Soc., Volume 34 (1959), pp. 481-484 | DOI | MR | Zbl
[18] Minimal rational curves on moduli spaces of stable bundles, Math. Ann., Volume 331 (2005), pp. 925-937 | DOI | MR
[19] An analogue of the Torelli theorem for two-dimensional bundles over an algebraic curve of arbitrary genus (Russian), Izv. Akad. Nauk SSSR Ser. Mat., Volume 33 (1969), pp. 1149-1170 in English: Math. USSR, Izv. 3 (1971) | MR | Zbl
[20] Analogues of Torelli’s theorem for multidimensional vector bundles over an arbitrary algebraic curve (Russian), Izv. Akad. Nauk SSSR Ser. Mat., Volume 34 (1970), pp. 338-365 in English: Math. USSR, Izv. 4 (1971) | MR | Zbl
Cité par Sources :