We study the cohomology of the group consisting of all -diffeomorphisms of the line, which are -flat to the identity at the origin. We construct non-trivial two second real cohomology classes and uncountably many second integral homology classes of this group.
On étudie la cohomologie du groupe des -difféomorphismes de la droite, qui sout -tangents à l’identité à l’origine. On construit deux classes non-triviales de cohomologie réelle de degré deux et un nombre non-dénombrable de classes d’homologie de dimension deux de ce groupe.
Keywords: cohomology of diffeomorphism groups, flat diffeomorphism, Massey product
Mot clés : semblable banalité autosimilarité logarithmique, loi de Gauß
@article{AIF_2012__62_1_77_0, author = {Ishida, Tomohiko}, title = {Second cohomology classes of the group of $C^1$-flat diffeomorphisms}, journal = {Annales de l'Institut Fourier}, pages = {77--85}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {1}, year = {2012}, doi = {10.5802/aif.2699}, mrnumber = {2986265}, zbl = {1253.58007}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2699/} }
TY - JOUR AU - Ishida, Tomohiko TI - Second cohomology classes of the group of $C^1$-flat diffeomorphisms JO - Annales de l'Institut Fourier PY - 2012 SP - 77 EP - 85 VL - 62 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2699/ DO - 10.5802/aif.2699 LA - en ID - AIF_2012__62_1_77_0 ER -
%0 Journal Article %A Ishida, Tomohiko %T Second cohomology classes of the group of $C^1$-flat diffeomorphisms %J Annales de l'Institut Fourier %D 2012 %P 77-85 %V 62 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2699/ %R 10.5802/aif.2699 %G en %F AIF_2012__62_1_77_0
Ishida, Tomohiko. Second cohomology classes of the group of $C^1$-flat diffeomorphisms. Annales de l'Institut Fourier, Volume 62 (2012) no. 1, pp. 77-85. doi : 10.5802/aif.2699. https://aif.centre-mersenne.org/articles/10.5802/aif.2699/
[1] Homologies of the group and its subgroups, J. Math. Kyoto Univ., Volume 20 (1980) no. 3, pp. 475-487 | MR | Zbl
[2] Cohomologies of the Lie algebra of formal vector fields, Izv. Akad. Nauk SSSR Ser. Mat., Volume 34 (1970), pp. 322-337 | MR | Zbl
[3] The cohomologies of Lie algebras of formal vector fields on the line, Funct. Anal. and Appl., Volume 7 (1973), p. 91-97, 194–203 | DOI | Zbl
[4] Massey higher products, Trans. Amer. Math. Soc., Volume 124 (1966), pp. 431-449 | DOI | MR | Zbl
[5] Algebra of formal vector fields on the line and Buchstaber’s conjecture, Funct. Anal. Appl., Volume 43 (2009), pp. 264-278 | DOI | MR
[6] Normal forms for certain singularities of vectorfields, Ann. Inst. Fourier (Grenoble), Volume 23 (1973) no. 2, pp. 163-195 Colloque International sur l’Analyse et la Topologie Différentielle (Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, 1972) | DOI | Numdam | MR | Zbl
[7] Filtering bases: a tool to compute cohomologies of abstract subalgebras of the Witt algebra, Unconventional Lie algebras (Adv. Soviet Math.), Volume 17, Amer. Math. Soc., Providence, RI, 1993, pp. 155-216 | MR | Zbl
Cited by Sources: