Albanese varieties with modulus and Hodge theory
Annales de l'Institut Fourier, Volume 62 (2012) no. 2, pp. 783-806.

Let X be a proper smooth variety over a field k of characteristic 0 and Y an effective divisor on X with multiplicity. We introduce a generalized Albanese variety Alb(X,Y) of X of modulus Y, as higher dimensional analogue of the generalized Jacobian with modulus of Rosenlicht-Serre. Our construction is algebraic. For k= we give a Hodge theoretic description.

Soient X une variété propre et lisse sur un corps k de caractéristique 0 et Y un diviseur effectif avec multiplicité sur X. Nous introduisons une variété d’Albanese généralisée Alb(X,Y) de X, de module Y, comme analogue en dimension supérieure de la jacobienne généralisée avec module de Rosenlicht-Serre. Notre construction est algébrique. Si k=, nous donnons une description en termes de théorie de Hodge.

DOI: 10.5802/aif.2694
Classification: 14L10, 14C30, 14F42
Keywords: generalized Albanese variety, modulus of a rational map, generalized mixed Hodge structure
Mot clés : variété d’Albanese généralisée, module d’une fonction, structure de Hodge mixte généralisée

Kato, Kazuya 1; Russell, Henrik 2

1 University of Chicago Department of Mathematics Chicago, IL 60637 (USA)
2 Universität Duisburg-Essen FB6 Mathematik, Campus Essen 45117 Essen (Germany)
@article{AIF_2012__62_2_783_0,
     author = {Kato, Kazuya and Russell, Henrik},
     title = {Albanese varieties with modulus and {Hodge} theory},
     journal = {Annales de l'Institut Fourier},
     pages = {783--806},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {62},
     number = {2},
     year = {2012},
     doi = {10.5802/aif.2694},
     mrnumber = {2985516},
     zbl = {1261.14023},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2694/}
}
TY  - JOUR
AU  - Kato, Kazuya
AU  - Russell, Henrik
TI  - Albanese varieties with modulus and Hodge theory
JO  - Annales de l'Institut Fourier
PY  - 2012
SP  - 783
EP  - 806
VL  - 62
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2694/
DO  - 10.5802/aif.2694
LA  - en
ID  - AIF_2012__62_2_783_0
ER  - 
%0 Journal Article
%A Kato, Kazuya
%A Russell, Henrik
%T Albanese varieties with modulus and Hodge theory
%J Annales de l'Institut Fourier
%D 2012
%P 783-806
%V 62
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2694/
%R 10.5802/aif.2694
%G en
%F AIF_2012__62_2_783_0
Kato, Kazuya; Russell, Henrik. Albanese varieties with modulus and Hodge theory. Annales de l'Institut Fourier, Volume 62 (2012) no. 2, pp. 783-806. doi : 10.5802/aif.2694. https://aif.centre-mersenne.org/articles/10.5802/aif.2694/

[1] Barbieri-Viale, Luca Formal Hodge theory, Math. Res. Lett., Volume 14 (2007) no. 3, pp. 385-394 | MR

[2] Barbieri-Viale, Luca; Bertapelle, Alessandra Sharp de Rham realization, Adv. Math., Volume 222 (2009) no. 4, pp. 1308-1338 | DOI | MR

[3] Barbieri-Viale, Luca; Srinivas, Vasudevan Albanese and Picard 1-motives, Mém. Soc. Math. Fr. (N.S.) (2001) no. 87, pp. vi+104 | Numdam | MR | Zbl

[4] Bloch, Spencer; Srinivas, V. Enriched Hodge structures, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000) (Tata Inst. Fund. Res. Stud. Math.), Volume 16, Tata Inst. Fund. Res., Bombay, 2002, pp. 171-184 | MR

[5] Deligne, Pierre Théorie de Hodge. II et III, Inst. Hautes Études Sci. Publ. Math. (1971 et 1974) no. 40 et 44, p. 5-78 et 5–77 | DOI | Numdam | Zbl

[6] Esnault, Hélène; Srinivas, V.; Viehweg, Eckart The universal regular quotient of the Chow group of points on projective varieties, Invent. Math., Volume 135 (1999) no. 3, pp. 595-664 | DOI | MR | Zbl

[7] Grothendieck, A. On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1966) no. 29, pp. 95-103 | DOI | Numdam | MR | Zbl

[8] Hartshorne, Robin Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin, 1966 | MR

[9] Laumon, G. Transformation de Fourier généralisée, 1996 (Preprint arXiv:alg-geom/9603004)

[10] Russell, Henrik Generalized Albanese and its dual, J. Math. Kyoto Univ., Volume 48 (2008) no. 4, pp. 907-949 | MR | Zbl

[11] Russell, Henrik Albanese varieties with modulus over a perfect field, 2010 (Preprint arXiv:0902.2533v2) | Zbl

Cited by Sources: