[Géométrie de contact des équations de Monge-Ampère multidimensionnelles : caractéristiques, intégrales intermédiaires et solutions]
Nous étudions la géométrie des équations aux dérivées partielles scalaires du deuxième ordre multidimensionnelles (c’est-à-dire, EDP avec
Nous montrons que toutes les EMA de cette classe sont associées à une sous-distribution
We study the geometry of multidimensional scalar
We show that any MAE of this class is associated with an
Keywords: Hypersurfaces of Lagrangian Grassmannians, contact geometry, subdistributions of a contact distribution, Monge-Ampère equations, characteristics, intermediate integrals
Mots-clés : hypersurfaces du fibré Grassmannien Lagrangien, géométrie de contact, sous-distribution de la distribution de contact, équations de Monge-Ampère, caractéristiques, intégrales intermédiaires
Alekseevsky, Dmitri V. 1 ; Alonso-Blanco, Ricardo 2 ; Manno, Gianni 3 ; Pugliese, Fabrizio 4
@article{AIF_2012__62_2_497_0, author = {Alekseevsky, Dmitri V. and Alonso-Blanco, Ricardo and Manno, Gianni and Pugliese, Fabrizio}, title = {Contact geometry of multidimensional {Monge-Amp\`ere} equations: characteristics, intermediate integrals and solutions}, journal = {Annales de l'Institut Fourier}, pages = {497--524}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {2}, year = {2012}, doi = {10.5802/aif.2686}, mrnumber = {2985508}, zbl = {1253.53075}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2686/} }
TY - JOUR AU - Alekseevsky, Dmitri V. AU - Alonso-Blanco, Ricardo AU - Manno, Gianni AU - Pugliese, Fabrizio TI - Contact geometry of multidimensional Monge-Ampère equations: characteristics, intermediate integrals and solutions JO - Annales de l'Institut Fourier PY - 2012 SP - 497 EP - 524 VL - 62 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2686/ DO - 10.5802/aif.2686 LA - en ID - AIF_2012__62_2_497_0 ER -
%0 Journal Article %A Alekseevsky, Dmitri V. %A Alonso-Blanco, Ricardo %A Manno, Gianni %A Pugliese, Fabrizio %T Contact geometry of multidimensional Monge-Ampère equations: characteristics, intermediate integrals and solutions %J Annales de l'Institut Fourier %D 2012 %P 497-524 %V 62 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2686/ %R 10.5802/aif.2686 %G en %F AIF_2012__62_2_497_0
Alekseevsky, Dmitri V.; Alonso-Blanco, Ricardo; Manno, Gianni; Pugliese, Fabrizio. Contact geometry of multidimensional Monge-Ampère equations: characteristics, intermediate integrals and solutions. Annales de l'Institut Fourier, Tome 62 (2012) no. 2, pp. 497-524. doi : 10.5802/aif.2686. https://aif.centre-mersenne.org/articles/10.5802/aif.2686/
[1] Conformal differential geometry and its generalizations, Pure and Applied Mathematics (New York), John Wiley & Sons Inc., New York, 1996 (A Wiley-Interscience Publication) | MR | Zbl
[2] Normal forms for Lagrangian distributions on 5-dimensional contact manifolds, Differential Geom. Appl., Volume 27 (2009) no. 2, pp. 212-229 | DOI | MR
[3] Contact relative differential invariants for non generic parabolic Monge-Ampère equations, Acta Appl. Math., Volume 101 (2008) no. 1-3, pp. 5-19 | DOI | MR
[4] Le champ scalaire de Monge-Ampère, Norske Vid. Selsk. Forh. (Trondheim), Volume 41 (1968), pp. 78-81 | MR | Zbl
[5] Sur l’équation générale de Monge-Ampère à plusieurs variables, C. R. Acad. Sci. Paris Sér. I Math., Volume 313 (1991) no. 11, pp. 805-808 | MR | Zbl
[6] On the integrability of symplectic Monge-Ampère equations, J. Geom. Phys., Volume 60 (2010) no. 10, pp. 1604-1616 | DOI | MR
[7] Integrable equations of the dispersionless Hirota type and hypersurfaces in the Lagrangian Grassmannian, Int. Math. Res. Not. IMRN (2010) no. 3, pp. 496-535 | MR
[8] Theory of differential equations. 1. Exact equations and Pfaff’s problem; 2, 3. Ordinary equations, not linear; 4. Ordinary linear equations; 5, 6. Partial differential equations, Six volumes bound as three, Dover Publications Inc., New York, 1959 | MR | Zbl
[9] Leçons sur l’intégration des équations aux dérivées partielles du second ordre, 1, Gauthier-Villars, Paris, 1890
[10] Sur les équations du second ordre à
[11] Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978 (Pure and Applied Mathematics) | MR | Zbl
[12] Classification of Monge-Ampère equations, Differential equations: geometry, symmetries and integrability (Abel Symp.), Volume 5, Springer-Verlag, Berlin, 2009, pp. 223-256 | MR
[13] Contact geometry and non-linear differential equations, Encyclopedia of Mathematics and its Applications, 101, Cambridge University Press, Cambridge, 2007 | MR
[14] Parabolic equations, Contributions to the theory of partial differential equations (Annals of Mathematics Studies, no. 33), Princeton University Press, Princeton, N. J., 1954, pp. 167-190 | MR | Zbl
[15] Contact geometry and second-order nonlinear differential equations, Uspekhi Mat. Nauk, Volume 34 (1979) no. 1(205), pp. 137-165 | MR | Zbl
[16] On decomposable Monge-Ampère equations, Lobachevskii J. Math., Volume 3 (1999), p. 185-196 (electronic) Towards 100 years after Sophus Lie (Kazan, 1998) | MR | Zbl
[17] Monge-Ampère equations viewed from contact geometry, Symplectic singularities and geometry of gauge fields (Warsaw, 1995) (Banach Center Publ.), Volume 39, Polish Acad. Sci., Warsaw, 1997, pp. 105-121 | MR | Zbl
[18] Ecuaciones diferenciales I (1982) (Ed. Universidad de Salamanca)
[19] Lectures on partial differential equations (1991) (Dover Publication, New York)
[20] Su una naturale estensione a tre variabili dell’equazione di Monge-Ampère, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), Volume 55 (1973), p. 445-449 (1974) | MR | Zbl
[21] The classical differential geometry of curves and surfaces, Lie Groups: History, Frontiers and Applications, Series A, XV, Math Sci Press, Brookline, MA, 1986 (Translated from the second French edition by James Glazebrook, With a preface by Robert Hermann) | MR | Zbl
- Integrability of Dispersionless Hirota-Type Equations and the Symplectic Monge–Ampère Property, International Mathematics Research Notices, Volume 2021 (2021) no. 18, p. 14220 | DOI:10.1093/imrn/rnaa025
- Lowest degree invariant second-order PDEs over rational homogeneous contact manifolds, Communications in Contemporary Mathematics, Volume 21 (2019) no. 01, p. 1750089 | DOI:10.1142/s0219199717500894
- Contact manifolds, Lagrangian Grassmannians and PDEs, Complex Manifolds, Volume 5 (2018) no. 1, p. 26 | DOI:10.1515/coma-2018-0003
- Completely exceptional 2nd order PDEs via conformal geometry and BGG resolution, Journal of Geometry and Physics, Volume 113 (2017), p. 86 | DOI:10.1016/j.geomphys.2016.04.021
- Partial extensions of jets and the polar distribution on Grassmannians of non-maximal integral elements, Journal of Differential Equations, Volume 260 (2016) no. 3, p. 3056 | DOI:10.1016/j.jde.2015.10.028
- Finding solutions of parabolic Monge–Ampère equations by using the geometry of sections of the contact distribution, Differential Geometry and its Applications, Volume 33 (2014), p. 144 | DOI:10.1016/j.difgeo.2013.10.015
- Remarks on non-maximal integral elements of the Cartan plane in jet spaces, Journal of Geometry and Physics, Volume 85 (2014), p. 185 | DOI:10.1016/j.geomphys.2014.05.006
- Ordinary differential equations described by their Lie symmetry algebra, Journal of Geometry and Physics, Volume 85 (2014), p. 2 | DOI:10.1016/j.geomphys.2014.05.028
- Monge-Ampère Equations on (Para-)Kähler Manifolds: from Characteristic Subspaces to Special Lagrangian Submanifolds, Acta Applicandae Mathematicae, Volume 120 (2012) no. 1, p. 3 | DOI:10.1007/s10440-012-9707-1
Cité par 9 documents. Sources : Crossref