Soient une algèbre de Lie réductive complexe et une sous-algèbre réductive. On dit qu’un module est borné si les -multiplicités de sont uniformément bornées. Dans cet article, nous commençons une étude générale des -modules bornés. Nous donnons une condition forte pour qu’une sous-algèbre soit bornée, c’est-à-dire qu’il existe un -module simple borné de dimension infinie (Corollaire 4.6) puis nous établissons une condition suffisante pour qu’une sous-algèbre soit bornée (Theorème 5.1). Nous pouvons alors classifier les sous-algèbres réductives bornées maximales de .
Let be a complex reductive Lie algebra and be any reductive in subalgebra. We call a -module bounded if the -multiplicities of are uniformly bounded. In this paper we initiate a general study of simple bounded -modules. We prove a strong necessary condition for a subalgebra to be bounded (Corollary 4.6), i.e. to admit an infinite-dimensional simple bounded -module, and then establish a sufficient condition for a subalgebra to be bounded (Theorem 5.1). As a result we are able to classify the maximal bounded reductive subalgebras of .
Keywords: Generalized Harish-Chandra module, bounded $(\mathfrak{g},\mathfrak{k})$-module
Mot clés : module de Harish-Chandra généralisé, $(\mathfrak{g},\mathfrak{k})$-module borné
Penkov, Ivan 1 ; Serganova, Vera 2
@article{AIF_2012__62_2_477_0, author = {Penkov, Ivan and Serganova, Vera}, title = {On bounded generalized {Harish-Chandra} modules}, journal = {Annales de l'Institut Fourier}, pages = {477--496}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {2}, year = {2012}, doi = {10.5802/aif.2685}, mrnumber = {2985507}, zbl = {1281.17010}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2685/} }
TY - JOUR AU - Penkov, Ivan AU - Serganova, Vera TI - On bounded generalized Harish-Chandra modules JO - Annales de l'Institut Fourier PY - 2012 SP - 477 EP - 496 VL - 62 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2685/ DO - 10.5802/aif.2685 LA - en ID - AIF_2012__62_2_477_0 ER -
%0 Journal Article %A Penkov, Ivan %A Serganova, Vera %T On bounded generalized Harish-Chandra modules %J Annales de l'Institut Fourier %D 2012 %P 477-496 %V 62 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2685/ %R 10.5802/aif.2685 %G en %F AIF_2012__62_2_477_0
Penkov, Ivan; Serganova, Vera. On bounded generalized Harish-Chandra modules. Annales de l'Institut Fourier, Tome 62 (2012) no. 2, pp. 477-496. doi : 10.5802/aif.2685. https://aif.centre-mersenne.org/articles/10.5802/aif.2685/
[1] Minimal identities for algebras, Proc. Amer. Math. Soc., Volume 1 (1950), pp. 449-463 | DOI | MR | Zbl
[2] A distinguished family of unitary representations for the exceptional groups of real rank 4. Lie theory and geometry, Progr. Math., Volume 123 (1994), pp. 289-304 | MR | Zbl
[3] Localisation de -modules, C. R. Acad. Sci. Paris Sér. I Math., Volume 292 (1981) no. 1, pp. 15-18 | MR | Zbl
[4] Tensor products of finite and infinite-dimensional representations of semi-simple Lie algebras, Compositio Math., Volume 41 (1980) no. 2, pp. 245-285 | Numdam | MR | Zbl
[5] Über primitive Ideale in der Einhüllenden einer halbeinfachen Lie-Algebra, Invent. Math., Volume 39 (1977) no. 1, pp. 1-53 | DOI | MR | Zbl
[6] The unitary dual of , Invent. Math., Volume 116 (1994), pp. 677-791 | DOI | MR | Zbl
[7] Enveloping algebras, 14, North Holland, Amsterdam, 1977 | MR
[8] The maximal subgroups of the classical groups, Trudy Moscov. Mat. Obsh., Volume 1 (1952), pp. 39-166 | MR | Zbl
[9] Unitary derived functor modules with small spectrum, Acta Math., Volume 154 (2006), pp. 105-136 | DOI | MR | Zbl
[10] Algebra II, Ring Theory, Springer-Verlag, 1976 | MR | Zbl
[11] Lie algebra modules with finite-dimensional weight spaces, Trans. Amer. Math. Soc., Volume 322 (1990), pp. 757-781 | MR | Zbl
[12] The integrability of characteristics, Comm. Pure Appl. Math., Volume 23 (1970), pp. 39-77 | DOI | MR | Zbl
[13] Infinite irreducible representations of the Lorentz group, Proc. Roy. Soc. London, Ser. A, Volume 189 (1947), pp. 372-401 | DOI | MR
[14] On the associated variety of a primitive ideal, J. Algebra, Volume 2 (1985), pp. 509-523 | DOI | MR | Zbl
[15] Some ring-theoretic techniques and open problems in enveloping algebras, Noncommutative rings (Berkeley, CA, 1989) (Math. Sci. Res. Inst. Publ.), Volume 24, Springer, New York, 1992, pp. 27-67 | MR | Zbl
[16] Some remarks on nilpotent of orbits, J. Algebra, Volume 64 (1980), pp. 190-213 | DOI | MR | Zbl
[17] Constructing groups associated to infinite-dimensional Lie algebras, Infinite-dimensional groups with applications (Berkeley, Calif., 1984) (Math. Sci. Res. Inst. Publ.), Volume 4, Springer, New York, 1985, pp. 167-216 | MR | Zbl
[18] B-functions and holonomic systems. Rationality of roots of B-functions, Invent. Math., Volume 38 (1976/77), pp. 33-53 | DOI | MR | Zbl
[19] Cohomological induction and unitary representations, Princeton Mathematical Series, 45, Princeton University Press, Princeton, NJ, 1995 | MR | Zbl
[20] Growth of algebras and Gelfand-Kirillov dimension, Research Notes in Mathematics, 116, Pitman (Advanced Publishing Program), Boston, MA, 1985 | MR | Zbl
[21] On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups (Math. Surveys Monogr.), Volume 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101-170 | MR | Zbl
[22] Classification of irreducible weight modules, Ann. Inst. Fourier (Grenoble), Volume 50 (2000) no. 2, pp. 537-592 | DOI | Numdam | MR
[23] Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990 (Translated from the Russian and with a preface by D. A. Leites) | MR | Zbl
[24] Generalized Harish-Chandra modules, Moscow Math. J., Volume 2 (2002), pp. 753-767 | MR
[25] Bounded simple -modules for , Journ. Lie Theory, Volume 20 (2010), pp. 581-615 | MR
[26] On the existence of -modules of finite type, Duke Math. J., Volume 125 (2004), pp. 329-349 | DOI | MR
[27] Generalized Harish-Chandra modules: a new direction of the structure theory of representations, Acta Applic. Math., Volume 81 (2004), pp. 311-326 | DOI | MR
[28] Generalized Harish-Chandra modules with generic minimal -type, Asian J. of Math., Volume 8 (2004), pp. 795-812 | MR
[29] A construction of generalized Harish-Chandra modules with arbitrary minimal -type, Canad. Math. Bull., Volume 50 (2007), pp. 603-609 | DOI | MR
[30] Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Raeumen, Invent. Math., Volume 116 (1969/1970), pp. 61-80 | DOI | MR | Zbl
[31] The unitary spectrum of real rank one groups, Invent. Math., Volume 72 (1983), pp. 27-55 | DOI | MR | Zbl
[32] Harmonic analysis on hyperboloids, J. Fuct. Analysis, Volume 12 (1973), pp. 341-383 | DOI | MR | Zbl
[33] Homogeneous domains on flag manifolds and spherical subgroups of semi-simple Lie groups, Func. Anal. i Pril., Volume 12 (1978), pp. 12-19 | Zbl
[34] Singular unitary representations, Noncommutative harmonic analysis and Lie groups (Marseille, 1980) (Lecture Notes in Math.), Volume 880, Springer, Berlin, 1981, pp. 506-535 | MR | Zbl
[35] Tensor product of finite- and infinite-dimensional representations of semisimple Lie groups, Ann. Math., Volume 106 (1977), pp. 295-308 | DOI | MR | Zbl
Cité par Sources :