We analyse several examples of separable Banach spaces, some of them new, and relate them to several dichotomies obtained in [11],by classifying them according to which side of the dichotomies they fall.
Plusieurs exemples d’espaces de Banach séparables, dont certains sont nouveaux, sont analysés, et reliés à plusieurs dichotomies obtenues dans [11]. Ces exemples sont classifiés en fonction de quelle alternative de chaque dichotomie ils satisfont.
Keywords: tight Banach spaces, dichotomies, classification of Banach spaces
Mot clés : espaces de Banach étroits, dichotomies, classification des espaces de Banach
Ferenczi, Valentin 1; Rosendal, Christian 2
@article{AIF_2012__62_2_439_0, author = {Ferenczi, Valentin and Rosendal, Christian}, title = {Banach spaces without minimal subspaces {\textendash} {Examples}}, journal = {Annales de l'Institut Fourier}, pages = {439--475}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {2}, year = {2012}, doi = {10.5802/aif.2684}, mrnumber = {2985506}, zbl = {1254.46011}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2684/} }
TY - JOUR AU - Ferenczi, Valentin AU - Rosendal, Christian TI - Banach spaces without minimal subspaces – Examples JO - Annales de l'Institut Fourier PY - 2012 SP - 439 EP - 475 VL - 62 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2684/ DO - 10.5802/aif.2684 LA - en ID - AIF_2012__62_2_439_0 ER -
%0 Journal Article %A Ferenczi, Valentin %A Rosendal, Christian %T Banach spaces without minimal subspaces – Examples %J Annales de l'Institut Fourier %D 2012 %P 439-475 %V 62 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2684/ %R 10.5802/aif.2684 %G en %F AIF_2012__62_2_439_0
Ferenczi, Valentin; Rosendal, Christian. Banach spaces without minimal subspaces – Examples. Annales de l'Institut Fourier, Volume 62 (2012) no. 2, pp. 439-475. doi : 10.5802/aif.2684. https://aif.centre-mersenne.org/articles/10.5802/aif.2684/
[1] An extremely non-homogeneous weak Hilbert space, Trans. Amer. Math. Soc. (to appear)
[2] A weak Hilbert space with few symmetries, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 23-24, pp. 1293-1296 | DOI | MR
[3] Examples of asymptotic Banach spaces, Trans. Amer. Math. Soc., Volume 349 (1997) no. 3, pp. 973-995 | DOI | MR | Zbl
[4] Modified mixed Tsirelson spaces, J. Funct. Anal., Volume 159 (1998) no. 1, pp. 43-109 | DOI | MR | Zbl
[5] A hereditarily indecomposable -space that solves the scalar-plus-compact problem, Acta Math., Volume 206 (2011) no. 1, pp. 1-54 | DOI | MR
[6] A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces, Fund. Math., Volume 172 (2002) no. 2, pp. 117-152 | DOI | MR | Zbl
[7] Some questions arising from the homogeneous Banach space problem, Banach spaces (Mérida, 1992) (Contemp. Math.), Volume 144, Amer. Math. Soc., Providence, RI, 1993, pp. 35-52 | MR | Zbl
[8] Tsirelson’s space, Lecture Notes in Mathematics, 1363, Springer-Verlag, Berlin, 1989 (With an appendix by J. Baker, O. Slotterbeck and R. Aron) | MR | Zbl
[9] On strongly asymptotically spaces and minimality, Journal of the London Math. Soc., Volume 75 (2007) no. 2, pp. 409-419 | DOI | MR
[10] Ergodic Banach spaces, Adv. Math., Volume 195 (2005) no. 1, pp. 259-282 | DOI | MR
[11] Banach spaces without minimal subspaces, J. Funct. Anal., Volume 257 (2009) no. 1, pp. 149-193 | DOI | MR
[12] A solution to Banach’s hyperplane problem, Bull. London Math. Soc., Volume 26 (1994) no. 6, pp. 523-530 | DOI | MR | Zbl
[13] A hereditarily indecomposable space with an asymptotic unconditional basis, Geometric aspects of functional analysis (Israel, 1992–1994) (Oper. Theory Adv. Appl.), Volume 77, Birkhäuser, Basel, 1995, pp. 112-120 | MR | Zbl
[14] A new dichotomy for Banach spaces, Geom. Funct. Anal., Volume 6 (1996) no. 6, pp. 1083-1093 | DOI | MR | Zbl
[15] An infinite Ramsey theorem and some Banach-space dichotomies, Ann. of Math. (2), Volume 156 (2002) no. 3, pp. 797-833 | DOI | MR
[16] The unconditional basic sequence problem, J. Amer. Math. Soc., Volume 6 (1993) no. 4, pp. 851-874 | DOI | MR | Zbl
[17] Minimality properties of Tsirelson type spaces, Studia Math., Volume 187 (2008) no. 3, pp. 233-263 | DOI | MR
[18] Quasi-minimality in mixed Tsirelson’s spaces, Math. Nachrichten (to appear)
[19] An arbitrarily distortable Banach space, Israel J. Math., Volume 76 (1991) no. 1-2, pp. 81-95 | DOI | MR | Zbl
[20] On the existence of asymptotic- structures in Banach spaces, Canad. Math. Bull., Volume 50 (2007) no. 4, pp. 619-631 | DOI | MR
[21] Not every Banach space contains or , Functional Anal. Appl., Volume 8 (1974), pp. 138-141 | DOI | Zbl
Cited by Sources: