Banach spaces without minimal subspaces – Examples
Annales de l'Institut Fourier, Volume 62 (2012) no. 2, pp. 439-475.

We analyse several examples of separable Banach spaces, some of them new, and relate them to several dichotomies obtained in [11],by classifying them according to which side of the dichotomies they fall.

Plusieurs exemples d’espaces de Banach séparables, dont certains sont nouveaux, sont analysés, et reliés à plusieurs dichotomies obtenues dans [11]. Ces exemples sont classifiés en fonction de quelle alternative de chaque dichotomie ils satisfont.

DOI: 10.5802/aif.2684
Classification: 46B03, 03E15
Keywords: tight Banach spaces, dichotomies, classification of Banach spaces
Mot clés : espaces de Banach étroits, dichotomies, classification des espaces de Banach
Ferenczi, Valentin 1; Rosendal, Christian 2

1 Universidade de São Paulo Instituto de Matemática e Estatística Departamento de Matemática rua do Matão, 1010 05508-090 São Paulo, SP, (Brazil)
2 University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science 851 S. Morgan Street Chicago, IL 60607-7045 (USA)
@article{AIF_2012__62_2_439_0,
     author = {Ferenczi, Valentin and Rosendal, Christian},
     title = {Banach spaces without minimal subspaces {\textendash} {Examples}},
     journal = {Annales de l'Institut Fourier},
     pages = {439--475},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {62},
     number = {2},
     year = {2012},
     doi = {10.5802/aif.2684},
     mrnumber = {2985506},
     zbl = {1254.46011},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2684/}
}
TY  - JOUR
AU  - Ferenczi, Valentin
AU  - Rosendal, Christian
TI  - Banach spaces without minimal subspaces – Examples
JO  - Annales de l'Institut Fourier
PY  - 2012
SP  - 439
EP  - 475
VL  - 62
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2684/
DO  - 10.5802/aif.2684
LA  - en
ID  - AIF_2012__62_2_439_0
ER  - 
%0 Journal Article
%A Ferenczi, Valentin
%A Rosendal, Christian
%T Banach spaces without minimal subspaces – Examples
%J Annales de l'Institut Fourier
%D 2012
%P 439-475
%V 62
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2684/
%R 10.5802/aif.2684
%G en
%F AIF_2012__62_2_439_0
Ferenczi, Valentin; Rosendal, Christian. Banach spaces without minimal subspaces – Examples. Annales de l'Institut Fourier, Volume 62 (2012) no. 2, pp. 439-475. doi : 10.5802/aif.2684. https://aif.centre-mersenne.org/articles/10.5802/aif.2684/

[1] Argyros, Spiros A.; Beanland, Kevin; Raikoftsalis, Theocharis An extremely non-homogeneous weak Hilbert space, Trans. Amer. Math. Soc. (to appear)

[2] Argyros, Spiros A.; Beanland, Kevin; Raikoftsalis, Theocharis A weak Hilbert space with few symmetries, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 23-24, pp. 1293-1296 | DOI | MR

[3] Argyros, Spiros A.; Deliyanni, I. Examples of asymptotic l 1 Banach spaces, Trans. Amer. Math. Soc., Volume 349 (1997) no. 3, pp. 973-995 | DOI | MR | Zbl

[4] Argyros, Spiros A.; Deliyanni, I.; Kutzarova, D. N.; Manoussakis, A. Modified mixed Tsirelson spaces, J. Funct. Anal., Volume 159 (1998) no. 1, pp. 43-109 | DOI | MR | Zbl

[5] Argyros, Spiros A.; Haydon, R. A hereditarily indecomposable -space that solves the scalar-plus-compact problem, Acta Math., Volume 206 (2011) no. 1, pp. 1-54 | DOI | MR

[6] Bossard, Benoît A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces, Fund. Math., Volume 172 (2002) no. 2, pp. 117-152 | DOI | MR | Zbl

[7] Casazza, Peter G. Some questions arising from the homogeneous Banach space problem, Banach spaces (Mérida, 1992) (Contemp. Math.), Volume 144, Amer. Math. Soc., Providence, RI, 1993, pp. 35-52 | MR | Zbl

[8] Casazza, Peter G.; Shura, Thaddeus J. Tsirelson’s space, Lecture Notes in Mathematics, 1363, Springer-Verlag, Berlin, 1989 (With an appendix by J. Baker, O. Slotterbeck and R. Aron) | MR | Zbl

[9] Dilworth, S.; Ferenczi, V.; Kutzarova, D.; Odell, E. On strongly asymptotically p spaces and minimality, Journal of the London Math. Soc., Volume 75 (2007) no. 2, pp. 409-419 | DOI | MR

[10] Ferenczi, Valentin; Rosendal, Christian Ergodic Banach spaces, Adv. Math., Volume 195 (2005) no. 1, pp. 259-282 | DOI | MR

[11] Ferenczi, Valentin; Rosendal, Christian Banach spaces without minimal subspaces, J. Funct. Anal., Volume 257 (2009) no. 1, pp. 149-193 | DOI | MR

[12] Gowers, W. T. A solution to Banach’s hyperplane problem, Bull. London Math. Soc., Volume 26 (1994) no. 6, pp. 523-530 | DOI | MR | Zbl

[13] Gowers, W. T. A hereditarily indecomposable space with an asymptotic unconditional basis, Geometric aspects of functional analysis (Israel, 1992–1994) (Oper. Theory Adv. Appl.), Volume 77, Birkhäuser, Basel, 1995, pp. 112-120 | MR | Zbl

[14] Gowers, W. T. A new dichotomy for Banach spaces, Geom. Funct. Anal., Volume 6 (1996) no. 6, pp. 1083-1093 | DOI | MR | Zbl

[15] Gowers, W. T. An infinite Ramsey theorem and some Banach-space dichotomies, Ann. of Math. (2), Volume 156 (2002) no. 3, pp. 797-833 | DOI | MR

[16] Gowers, W. T.; Maurey, B. The unconditional basic sequence problem, J. Amer. Math. Soc., Volume 6 (1993) no. 4, pp. 851-874 | DOI | MR | Zbl

[17] Kutzarova, Denka; Leung, Denny H.; Manoussakis, Antonis; Tang, Wee-Kee Minimality properties of Tsirelson type spaces, Studia Math., Volume 187 (2008) no. 3, pp. 233-263 | DOI | MR

[18] Manoussakis, A.; Pelczar, A. Quasi-minimality in mixed Tsirelson’s spaces, Math. Nachrichten (to appear)

[19] Schlumprecht, Thomas An arbitrarily distortable Banach space, Israel J. Math., Volume 76 (1991) no. 1-2, pp. 81-95 | DOI | MR | Zbl

[20] Tcaciuc, Adi On the existence of asymptotic-l p structures in Banach spaces, Canad. Math. Bull., Volume 50 (2007) no. 4, pp. 619-631 | DOI | MR

[21] Tsirelson, B. S. Not every Banach space contains p or c 0 , Functional Anal. Appl., Volume 8 (1974), pp. 138-141 | DOI | Zbl

Cited by Sources: